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For the static Schwarzschild task, the operational
principle is introduced as an alternative to the principle
of general covariance. According to this principle, the
separation between arbitrarily space points has an
operational sense, that is, this separation is observed in
the context of the given measuring procedure. The content of
space operationalism can be specified in various ways. Thus,
there exist three types of the operational radial distance
for the spherically symmetrical space: the angqular distance

N expressed in terms of the physical surface ¥ = 4nn2, the
proper metric length R = fg"dr and the locational length

L=cAt, where At is the coordinate time which takes the light
signal to travel along the radius L there and back.

The present work studies different types of solutions
of the Schwarzschild problem on the basis of the operational
assignment of the 1length. A spherically symmetric static
body of a finite size (ideal uncompressable liquid) and its
limit case - a massive point-are considered as gravitational
sources. Apart from the standard solution (n - solution), we
derived a complete R - solution for an extended source. For
a point source, besides R-solution, the solution based on
the choice of the locational length L (L-solution) was also
considered. As for an extended source, we stated the
identity between n-solution and R-solution. However, for a
massive point, solutions gave the Jdifferent physical
surfaces of this source: =zero surface for a standard
solution, a surface which coincides with the Schwarzschild
singularity surface for R-solution, and a surface in excess
of the Schwarzschild one for L-solution. Such a difference
is associated with the existence of different 1limits (% »
% 0, R-> 0 and L 5> 0) from a common extended source to .3
massive point.

Here, in all cases, as distinct from the general
covariant ideology, both the coordinate value of the centre
of a spherical massive hody and the zero radial coordinate
of the point saurce location are defined before the
solution.

*The shutdown" procedure of gravitation has a sense in
the context of the operational approach. This procedure
correlates Schwarzschild metric with the Minkowsky one,
which is to be related to preferred coordinates. It provides
for a possibility to unambigucusly define such integral
constants which can not be found using Newton 1limit or
boundary conditions at infinity from a gravitational
source.



1. INTRODUCTION

In the General Theory of Relztivity the coordinate
systenms, used when solving gravitational problem
(determination of a metric tensor g from Einstein’s
equations), enjoy equal rights and are generally devoid of
any physical sense due to the principle of general
covariance [see e.g. Moller 1972; Hawking, Ellis 1973; Mis-
ner, Thorne, Wheeler 1973). In such a case, the coordinates
can take not only positive but negative values as well
regardless of the task conditions. Here, the only interval
dS has a physical meaning which is an invariant measure of
spacing between neighbouring space-time points. However, it
seems interesting to consider a distinct problem statement
where the preferred coordinate system (accompanying a
gravitational source) exists at the expense of the
operational principle, which gives a physical content to
coordinates. In such a statement, preferred coordinates nust
immediately represent physical properties of space and time.
In the given case, the use of any other coordinate systen
(in the context of same reference system) will be a simple
rearithmetization which doesn’t change a physical essence.

We consider that the operational space is such a space
where the separation between arbitrarily three-dimensional
points is determened using the ‘given measuring procedure. We
can have several such operational procedures for each task.
Thus, there exist three types of the operational radial
distance for the spherically symmetrical space
(Schwarzschild problem): the angular distance 3 expressed in
terms of the physical surface ¥ = 4un°, the proper metric
length R = g, .dr and the locational length L = cAt, where
4t is the coordinate time which takes the light signal to
travel along the radius L there and back.

The present paper studies different types of .solutions
of the Schwarzschild problem on the basis of the operational
assignment of the length. § spherically symmetric static
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body of a finite size (ideal incompressable liquid) and its
limit case - massive point-are considered as gravitational
sources. Apart from the standard solution (n - solution), we
derived a complete R - solution for an extended source. For
a point source, besides R - solution [Chermyanin, 1992), the
solution based on the choice of the locational length L (L -
solution) was also considered. As for an extended source, we
stated the identity between 3 -~ solution and R - solution.
Hoéevet, for a massive point, solutions gave different
values for a physical surface of this source: £ = 0 for a
standard solution, T = 41:(2(:1*!)2 for R - solution, which
means that a surface of the source coincides with the
Schwarzschild singularity; £ > 4n(2GH)’ for L - solution and
in this case the metric singularity is absent both in the
external space and in the source itself.

Here, in all cases both the coordinate value of the
centre of a spherical massive body and the zero radial
coordinate of the point source location are defined before
the solution. In the general eovariant ideology, the point
mass on the radial axis is not fixed prior to the solution
but is defined from the additional condition 7n(r) = 0 as a
place of infinite tidal forces. Here, the massive point is
determined as a certain central singularity which is not a
peint limit of a finite source in the ordinary sense,

In the proposed approach there exists the limit GM - 0
Fhat reduces the general gravitational metric to Minkowsky
metric written in preferred coordinates.It makes it possible
to unambiquously define the additive integral constant c,
for an external Schwarzschild task (see §§ 2a, 4). From the
general covariance standpoint, this limit does not have any
sense and the integral constant C, can take any value. We
can speak about the Minkowsky geometry in this case only at
the infinite distance from a gravitational source.



2. INDEPENDENT COMPLETE R-SOLUTION FOR THE SPHERICAL
SOURCE OF FINITE SIZE

Consider the operational spherically symmetric space
determined by coordinates R, Q, ¢. The metric, written in
these coordinates, we will denoted as the canonical one. Let
static ideal liquid, filling the space inside some sphere
with physical radius R, is a source of the gravitational
field. For simplicity consider the homogeneous liquid, f.e.
take g = const. Then the energy-momentum tensor for the
given medium, where macroscopic motion {s absent (u' = 0),
can be written as

o (u+P)s_sB - ps%; (1)

-rg - (u+ P)uaua - P3g ade 8

where P is pressure, ag - 6aa is 4-dimensional Kronecker
symbol. For the light velocity, consider ¢ = 1.

Let us write the spherically symmetric canonical
expression for a space-time interval as follows

ds® = e¥™de? - dr? - 2*(R) (d6® + sinedp?). (2)

Here v,n are arbitrary functions on the proper radial
variable R, which in its turn is some function on the
arbitrary radial coordinate r. The dependence R = R(r) is
determined apriori, i.e. before solution is derived. Let r =
= R. Then Einstein equations for the given task are reduced
to an independent systenm

l: -~
ERRCRL oo
vonc noz 1
e a2 (3b)
n n
'3 . *
v"+12—+2v—,‘l-¢(u+3p), {3¢c)

where the stroke marks the differentiation over R, & = 8nG,
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G is the Newtonian constant. If the boundary of the source
is assumed to be free, then the pressure at this boundary is
equal to zero and the liguid density, generally speaking,
has a continuity break. The condition for hydrostatic
equilibrium is written as follows

P = ~(u + P) -%'. 8)

a) External solution.

Outside the source (u = p = 0), the system (3) has only
two independent equations: the equation (3c) is a
combination of (3a) and (3b). Rewrite equations (3a), (3b)
for the given case as a systenm

2%" - v’y =0, (Sa)

2m* + ¥ -1=0. (5b)
The integration of (5a) gives the relation

n?=ce’, (6)

where <, is integration constant. Equation (Sb) can be
rewritten in the form

(') = v, &}

whence after integration we get the dependence

c,e" =1+ Cym, (8)

Where c, is constant. Taking into account the condition
% ~ R at a large distance from the source and the principle
of congruence of the component &Y with the gravity potential
¥=GM/R of the Newton theory, we find the values of constants
c, = 1 and c, = -20H, where M is gravitational mass of the
source.

A relation between the differentials dn and dR is
written in the form

dn = dR. (9}
1=




In the result of integration of (9) we have

R = c ¢ Vo = 2GH v + 2GNIn/Va]2GH = 1 + va]2GM/, (10)

where C, is an additive constant. The privileged position of
the coordinates R, 0, ¢ in the operaticnal approach ("R -
operationalisa”) must necessarity imply the existence of the
linit G¥ +» 0, which correlates the canonical metric (2) with
the Minkowsky one written in same coordinates. Whence, here
taking into account n = R at GM = 0, we get c, =0, that
corresponds to the Fock’s choice of such type of constant
(Fock, 1961}.

It can seem, that for the determination of c, it is
necessary to take beforehand into consideration its possible
dependence of the reducing mass G¥ and then the condition
GM = 0 cannot be used. However, such a dependence exists
only for those integration constants (these are <, and c, in
our case), which are determined with the Newtonian 1limit
Ioo = 1 = 20,

Note, that from the general covariance standpoint, the
constant C; can take any value because such a "shutdown® of
gravitation is senseless here. In this case, we can speak
about the Minkowsky geometry only at the infinite distance
from the source.

b) Inner solution.

Now consider a system (3) inside the spherical source.
The equation (3a) can be represented in the form

(m -’y = aun’n’. (11)
In the result of integration of (11) we have

o2

2% =1 - Hc, + aufn’dm, (12)

where c, is integration constant. Then, taking into account

(12) and the relation p’ = g% n’, and alsc the dependence

- 200+ 2(u + P)n
‘ 4

v
L




the condition for hydrostatic equilibrium can be written as

s+ p € tEuraidn + zpn°
)

3 (13)

S8

2
"W - ame, + =usaidn

Using (13), result of summation of equations (3a), (3b) can
be expressed as follows

v - Inimdys = 2@ IR (14)
1= 1/a(C, + zufn’dn)

After the integration of (14), we get the following relation

evnc;[l - 1/n(ca+ aufnzdn)]-exp{af &(u_+ P)ndn 3 },
1 - 1/n(C, + =ufn"dn)
(15)
where C; is constant.

The value o in the centre of the source |is

determined by c, i.e. in virtue of the integrated form

0 L}
I n'dn = I ndn + ., (186)
n

(o)

The choice of c‘ = 0 gives us the value of Ny = 0. Then

integrating (12) we obtain the relation (taking into account
that in the spherical centre R = 0 as well)

/ E%Q # R = arcsin ( / ggg u n] (17a)

or an inverse one

/ §§§ u 9= sin(/ 2%2 u R). (17b)

Integrating (13) and taking into consideration that on
the boundary (no) of the source the pressure is equal to



zZero, we get

1 - 830yt

u
[

®ks
L}

+ — (18)
n 2

1 - --3_-. uno

from which, taking into account (17b), we have the following

formula for the pressure p

cos(ARo) -~ cos({4R)
P = M 5s(aRr) = 3cos{4AR )’

(19)

where

8nG
As 3 M-

The constant C, is determined from the matching
condition on the boundary of the source for a metric
component ev. Using the relation

ZCos(ARO)
#+p=u 3cos(AR) - cos (AR)

in the calculation of the tabular integral
cos(AR) - 3cos(AR°)
cos(AR) (1 - 3cos(AR°))

rewrite expression (15) in the form

v cos(AR) -~ 3cos(AR5) 2
e = CE[ 1 - 3cos(AR) ] . (20)
Writing the matching condition
cos(AR) - 3cos(AR3) 2 208
s[ T = 3Cos(aR,) } 1 - n, (R (21)

and taking into account n, = 1/Asin(AR°) on the boundary of
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the source, we find the constant

M- 3cos(dﬂ;)]a

Csk r) .

Then (20) gets the final form

e’ = 7 [3cos(AR)) - cos(AR)F. (22)

Thus the obtained expressions (8), (10), (17), (19) and
(22) draw up a complete R-solution for a spherical source of
a finite size Ro. on the other hand, a standard solution
(n - solution) for a source of a finite size n, is known

2
ds® = (1 - 26M/n)de? - T"tggaﬁ75 - n°(de* + sin’edp?),
'l“lo
(23)

2
ds® = %[ 3/1 - - /1 - Azn"]dc’ -

2
- d"a i ni(de? + sinfodp?), n s LY
1 -2
But we have learnt already that for R- solution in the
source centre n = 0 as well. Therefore, if a value n, of
standard solution corresponds to a value R, in R-solution
according to (17) (i.e. the same source is assigned for
various solutions), these solutions can be formally
considered as one solution fixed in different coordinates
and where the coordinate relation is determined by formulae
(10) and (17). It means that for the given case the metrics
(2) written in arbitrary coordinates and a general n-metrics

ds® = ¥(Mae? - AMyy? o 32(de® + sin®ede®), (24)

vhere n is also some arbitrary function on coordinate r, are
physically eguivalent.
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3. THE R-SQLUTION FOR A POINT SOURCE

For a massive point, the relations (8) and (10) will be
the sought R-solution. The interval (2) can be written as

2 .
ds® = (1 - 26M/q)de? - ’i‘-'g%uﬁ - 7°(de® + sin‘edp’). (25)
where

R = v = 2CH vVn + 26M In|vnj2GN - 1 + Vn/2GH}|.

We have R » 0 in the place of the source location. However,
the value n on the source has here the value n = 2GN
different from zero. This testifies to the fact that the
singularity of this metrics within the open interval (0,=)
of the proper radial variable R is absent. The metric
peculiarity occurs only at R = 0. The source possesses here
a finite physical surface X = 4n(26M)° which coincides with
the Schwarsschild sphere [Chermyanin 1992].

4. SINGULARITY~FREE L-SOLUTION FOR A POINT SOURCE

Now let us consider the solution for a massive point on
the basis of the choice of “locational®” length L. Following
the operational ideology, we assume L = 0 in the place of
source location. Write a spherically symmetric expression
for the interval as

as® = ¥ (ae® - dr*) - 27(L) (a6’ + sinedy®), (26)

where »,n are arbitrary functions on the “locational*
variable L, which, in its turn, is some function on an
arbitrary radial coordinate r. Following a standard
procedure, we fix the coordinate system, assuming r = L.
Then Einstein equations for tie given task outside the
source are reduced to

1



. ' ‘: -
,'V(_!..'.L . ;‘L] + L oo, (27a)

" ?’ ’
. 2
..v‘ vnn' - I%J - 33 -0, (27b)
n n
v+ 2 2 oo, (27¢)

where the stroke defines the differentiation over L.

The system (27) has only two independent equations -
equation (27c) is a combination of (27a) and (27b). We get a
system by addition and subtraction of (27a) and (27b)

vy = 9%, (28a)

v . L4

e = (av')’. (28Db)
The integration of (28a) gives the relation

e =, (29)

where C, is integration constant. After the integration of
(28b), taking into account (29), we hava

dr E——-;—Ey;.- . (30)

vhere cz is a constant, and also

eV = c} - cc/n. (31)

Taking into account boundary conditions at infinity and the
principle of the congruence (in analogy with determination
of the constant for an external R-solution), we find the
values of constants c, = 1 and c; = +2GM.

In the result of integration of (29) we have

L = - 2G4 + 26M 1njn/26K - 1] + C,, (32)

where c; is additive constant. The metrics (26) can be
written as follows

12



ds® = (1 - 26M/7)(dt? - dL?) - n?(de® + sin’edp?). (33)

Ta'kinq into account the privilege of coordinate L in
"L-operationalism® and using equality n = L at GM = 0 we get
¢, = 0.

It follows from the relation (32) that u, on the source
(L = 0) has the value of 2GN < n, < 4CN different from zero.
This testifies to the fact that within the interval {0,=) of
the radial variable L the singularity in this metrics is
absent. The point source possesses here a finite physical
surface I = Mm;. At M - 0 the massive point coincides with
an ordinary geometrical point.

5. CONCLUSIGN

The existence of various massive points (as a certain
topoiogical formation) having surface different areas, is
admissible in the Riemann variety. The choice of the point
source will be bound up with the way of determining the
operational space. Ccnsidering three forms of operational
spherically symmetrical space, we have three types of
massive points possessing different physical surfaces: & =
=0, &= 4n(2GM)z and £ > 4n(ZGH)2. But which these sourcas
is more preferable? Following the ccnviction that rulers and
clocks must reflect geometrical properties of any space and
time existing in Gravitation, the author thinks that it is
more physical to consider the point source of R-solution.
The fact that metrical singularity coincides with the
surface of the source is more advantageous from the
aesthetic standpoint as well.

It conclusion it should be underlined that in the
operational approach a standard solution for a point
source, where the value of 7 is a radius-vector of a
spherical system, and R-solution (or L-solution) are
regarded both as one solution 1ritten in different
coordinates that is gquite reasonabkle only (unlike the
sources of finite physical dimension {Chermyanin 1990})

13



in the external the space region. Only in this case the
expression (10) (or (32)) can be interpreted as a simple
coordinate relation between n and R (or L) in the frames of
one and the same solution.
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