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Abstract — The time-domain radiating characteristics of planar
aperture antennas are obtained. The explicit formulas are given
to describe the radiation field of circular and rectangular plane
apertures at any point of the half space in front of aperture. We
discuss the tiine-domain behavior of the radiation field for different
space regions being of interest.
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Introduction

Properties of antennas operating with wide-band signals must be char-
acterized by either the radiation field spatial-frequency dependence, or by
spatial-temporal dependence, the latter being a Fourier transformation of
the former one. The dependence can be considered as a set of pulse radi-
ating characteristics (PRC) for each point of space around the anterna [1].
Using PRC, one can easily analyze, first of all, the field of antenna excited
by ultra-short (without the carrier) pulses. In practice, a need in such an
analysis occurs, for example, in measuring the characteristics of wide-band
antennas by the method of near-zone field[2]. Besides, as it will be shown be-
low, the calculation of PRC of the aperture antenna is considerably simplier
than that for the antenna field at the fixed frequency, and the form of PRC
can be easily interpreted.

Basic formulas

For the aperture antenna (mirror or the antenna array), we present PRC
Eq4(t,7) at the point with the coordinate defined by the radius-vector # in
the form of a convolution:

E(t,7) = ho(t) * E,(¢,T), (1)

where h,4(t) is the PRC of the feed or PRC of each element of the antenna ar-
ray (the latters are accepted identical for simplicity), E,(¢,7) can be defined
as PRC of the antenna aperture:
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where 7, is the radius-vector of the point on aperture, S, is the region
occupied by the aperture, g(7,) is the distribution of amplitudes of radiating
elements over the aperture, §(t) is the Dirac delta function. Since in ( 7 ) just
the term E,(t,) defines the fundamental peculiarities of spatial-temporal
structure of the antenna field, further we restrict ourselves by the analysis

of (2)



The iimits of application of (2 ) can be estimated by the Fourier trans-
formation E, (7).
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k =w/c. Expression (3 ) is the antenna field at the frequency w, calculated
by the aperture method [4] with an accuracy up to the constant factor at the
fixed frequency of the multiplier. The aperture method is widely used at least
for qualitative description of the antenna field (without taking into account
variations of the electric field vector orientation at large angles between the
pormal to aperture and the dirsction to the observation point D,) in the case,
when the dimension of the aperture D, much larger than the wavelength, i.e.
for the frequencies w > 2ac/D,. In order this requirement be fulfilled, we
shall assume, that valucs of the spectral components of PRC h,(t) out of the
region of frequencies |w| > 2xc/ D, are negligibly small, so that in expression
(1 ) for PRC of the antenna “incorrect” spectral components (2 ) will be
cut off.

We note, that qualitative dependence E, () on + for inphase antennas
at the fixed frequency w in the near zone was investigated in details (see,
for example, [3,4]): the field is of essentially different character in so called
projector region - geometrical continuation of the aperture in the direction
of the normal to the phase front and outside the projector beam - in the
region of side lobes. However, expressions for E, o(7) are rather cumbersome.
Even for apertures of the simplest form (circular, rectangular) at distances
admitting the expansion |7 — 7,| into power series with conservaticn of only
quadratic terms - projections 7, (Fresnel approxmation), the field is presented
either by expansion into special functions for the circular plane aperture, or
by a set of Fresnel integrals for the rectangular aperture [5].

In constract to (2 ) calculation of the aperture PRC is simplier and,
as it will be shown below, the result in many cases can be represented in
elementary functions. To calculate the PRC let us take a simply obtained
integration formula for the integral, containing é - function of the complex

argument:
[ [ vt nay= [ LEDAD__—g,
s r

grade |,z = z(7),y = y(7)

where T is the curver determined from equation ¢(z,y) = 0; z = z(v),y =
y(7) is a parametric representation of I, dv is an element of length I'. It is
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supposed here, that the solution of equation ¢(z,y) = 0 for z,y C S exists
and determines unique curve I'. fforall z,y C S ¢ > 0 or ¢ < 0, then
integral (4) equals to thero. For integral (2) the equation determining curve
T, is

l F— gy ‘:: ct. (5)

In three-dimentional space (5) describes a sphere with a center at point
+ and radius ct. The sphere crosses the aperture plane at ¢t > z, where z
is adistance from point  to aperture plane (for ct < z, it is obvious that
E, = 0). Curve T (a locus of intersection of the sphere and the aperture
plane) is a circle with radius b = /(ct)? - z3, with the center at point g,
where §'is a projection of vector 7 on the aperture plane (see Fig.1). For this
circle | #— 75 || grad(2 | # — 74 |) l7.cr= b/c from where

0, (a);
BA=1 2 [orcraar ox ©
T.

T, is a part of I', belonging to S,. For the constant amplitude distribution
over the aperture g = 1 in the case (b) for E, it follows elementary formula:

Eq(t,7) = cd, (7)

where angle ¢ is given in Fig.1.

Such transformation in the physical sense can be explained by the next
way. If each element of the aperture radiates 6-pulse at the moment ¢t = 0,
then, at the moment ¢’ > 0 the field at the point 7'is defined only by elements
lying on the circle or its part, where the sphere of ct’ radius and center at
7 point crosses the aperture plane. The field amplitude is defined by the
suspended integral over the given circle; the latter in many cases can be
expressed by elementary functions.



Fig.1. The curve of intersection of the sphere
with radius ¢t and the aperture plane. Here

S, - antenna aperture.



PRC of circular plane aperture

Introducing the cylindrical reference system p, , z, the center of which co-
incides with the center of the circular aperture of a radius, and for sim-
plicity we assume g(7,) = 1. Using (@), and taking into account, that
the field is dependent only on ¢t,z,p (¢ =| 5 |), integration, we obtain

Eq(t, p,2z) = 2¢ (1r - ¢(t)), we obtain in the limits of the projector area, 1.e.
at p<a:

( 0, 0<ct<z

2xe, z<ct <23+ (a - p)%;
3_,3_p3
Eq(t, p,2) = { %(w-uccwg—:TL), \/355'*'(‘1-!’)i <
<< 22+ (a+p)%;

L 0, Vii+(a+pP<et

, (®
Outside the limits of the projector area, i.e. at p > a:
[ 0, 0<ct<z3+(p—-a)3;
—al 424 b3
2carccos Lp-’-b, z34+(p-a)? <
Ea(t,p,z) = ¢ 20b (®)

<< \/z§+(p+a)3;
L0, VZi+@+pP<ect

Diagrams of these functions for different values of p, z are given in Figure 2,3.
When p = 0, i.c. at the axis z E,(¢, p, z) has the form of a rectangle, here
with increase of z the delays of leading and trailing edges are changed with
diferent velocity. It can be seen, that with small z the leading edge delays
~ z, and the delay of the trailing edge is practically unchanged, with further
increase of z, the velocity of the PRC duration variation is decreased. With
increase of the distance from the aperture axis (with increase of p) in the
limits of the projector area (see Fig. 3) the leading edge of the pulse remains

7




Fig.2. Spatial-temporal amplitude distribution
E(t,p = a/4,z) for circular plane aperture.
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Fig.3. Spatial-temporal amplitude distribution
E(t,p, z = af2) for circular plane aperture.



unchanged, the duration of the pulse leading edge is increased, here the de-
crease of the plane part length at the top of the pulse and its broadening take
place simultaneously. With increase of p outside the limits of the projector
area the pulse edges are broadened, the amplitude drops and the duration
tends to the value 2a. With increase of z at p < a the pulse duration is
decreased.

Outside the projector area the steepness of the leading edge is larger than
the trailing one, these are connected with nonlinear dependence of the arccos
function argument on time.

At the infinity the field at each moment of time will be defined as the
integral over the line of two plane intersection, the first is the aperture plane
and the second (the sphere of radius r,r — ©0) is the plane inclined by
the angle 0 to the aperture plane and is given in the form: F,(t,6,p) —

;f(t',O),r—v oo, where z =rcosf,p =rsinb,ct' =ct —r,
) 0, asinf < |et'];
E0=\ Do vemoyr =@, Iel<asns. 10

For 6 — 0 f5(t',6) — xa35(t').
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Fig.4. Spatial-temporal amplitude distribution

E(t,z = 0,y < a,z = a/8) for square aperture,
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Fig.5. Spatial-temporal amplitude distribution
E(t,z = 0,y > a,2 = 0.625a) for square aperture.
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PRC of rectangular plane aperture

We obtain an expression for the time dependence of the rectangular plane
aperture field in the limits of the projector area if we change the limits of
integration over ¢ in expression (77

Ec(t’ Y z) =2x - i $m.n s (11)
1

o, < /23 +13;
e
Pmn = “0003‘/(————)2—— VE24+I12 <t <[22 4+13 +13; (12)
llﬂ'l 3 2 3 o
SICCOS————,I_'%—-H.}., vz +Im+l,,<ct,

m = 1...4 is the nmnber of the aperture boundary; n is the number of
the boundary perpendicular to that with the number m, I, 1, is the distance
from the projection of the observation point on the aperture plane up to the
boundaries of apertures with numbers m, n, respectively. The form of the
field Eq(t,z = 0,y < ay, z) for a; = ay is given in Figure 4. In contrast to
PRC of circular plane aperture at p = 0, the duration of the trailing edge is
always not zero and contains several zones defined by different character of
intersection between the circles and the aperture boundary. With increase of
the distance from the axis, the duration of the plane zone at the top of PRC
is decreased, and the total duration of the pulse is increased. The form of
the trailing edge for the rectangular aperture will depend also on the relation
of a;/ay,. We give expressions for the field outside the limits of the projector
area for two cases: when only one projection is outside the aperture limits
(13) and when both projections are outside the aperture limits (see Figure 5,
expression (17)).

Ec(f" Z,Y, z) = Pright + ¢lafb (13)

¢ﬂght.lc!t '¢3 - ¢1lv (14)
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0, < VeT+1;
$1= 8’““';')\/%. m<d<m; (15)
0, d>m.
(0, < V2T
atcsm-—(—ct—;i-— VAR <t < [+ 1

-z3

P2 = § (16)

axccos\/____ ‘/ 23+ 1P <t <2312+ 15

| 0 JERH R+ <ot

where @rignt,less are angles in the right-hand and left-hand of half-plane, the
boundaries of half-planes are defined by the normal to two boundaries passing
through the projection of the observation point, Ik, [; is the distance from the
projection of the observation point on the aperture plane up to the nearest
aperture boundary and to the parallel one; j, n is the number of the aperture
boundary perpendicular to that with number 1.

Eo(t: z,Y, z) = @maz — Pmin, (17)
where dmaz > Pmin > 0, two others ¢, =0

0, <z +12 +12;
arccos———————- VZEHIE+ 12 <ct< Vzi+ 13 +Iz,

\/(ct) —-z32
form=1,2;

$em L (18)
arcesin ——m——, \ZZ+IZ+1Z<ct <22+ +1F,
V() - 22

A

form ='3, 4;

L 0, \/z’+13‘+l,3<ct
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where I, is the distance from the projection of the observation point up to
one of the aperture boundaries with number m; m = 1...4 is the number of
the aperture boundary; n, k are the numbers of boundaries perpendicular to
that with number m, here I > I, > .

At infinity the field at each moment of time will be defined as the integral
over the line of two plane intersection, the first is the aperture plane and the
plane (the sphere of the infinite radius) inclined by the angle 8 to the aper-
ture plane (polar angle) and vill be presented in the form: E,(¢,0,r,¢) —

z f(t,6,¢), where o- azimuth angel, 6- polar angle (here z = rsin8cos o,

y = rsinfsin p, z = rcosh, ct’ = ¢t — r, it being known that a, sinfcosp <
ay sin §sin ¢, sin O cos p > 0,sinfsin ¢ > 0).

( 2ayc . .
ﬁ’ sin §(a; cos ¢ + ay sin p) < |ct'};
¢(az cos p — ay sin p — |ct’| ) .
£(t,6,9) = 4 s sinOsiZywcosgo )’ sin f(a; cos ¢ — ay sin p) < [et’| <
< sin 8(a; cos ¢ + ay sin p);
. 0, sin 8(a; cos ¢ + a, sin p) < |ct’].
(19)

Conclusion

PRC for circular and rectangular plane apertures have been obtained for
all points of half space in front of the aperture. The formulas obtained are
turned out to be simplier than those known for aperture antenna fields in the
case of monochromatic signal they can be used for calculation of aperture
antenna spatial-frequency characteristic.
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