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We review and extend a self-consistent model for the generation of Pc 1 pearl
emissions, based on the nonlinear coupling between the magnetospheric and iono-
spheric resonators for Alfven waves. Following Polyakov et al. [1983]; Belyaev
et al. [1987] we attribute the formation of pearls to the pulsating regime of the
magnetospheric ion cyclotron maser with nonlinear selective mirrors. Such mirrors
are formed by the conjugate ionospheres: their reflection coefficient has an oscilla-
tory frequency dependence due to eigenmodes of the ionospheric Alfven resonator;
nonlinear magnetosphere/ionosphere feedback is provided by the dependence of
the value and frequency of the reflection maxima on the flux of energetic protons
precipitated into the ionospheres in the course of Alfven wave generation in the
magnetosphere. This feedback provides the formation of a single Alfven wave
packet oscillating between the ionospheres; reflection coefficients evolve periodi-
cally in time, conjugate ionospheres being in opposite phases, so that a reflection
maximum at a particular frequency occurs synchronously with the arrival of the
corresponding part of the wave packet.

We present an analysis of a mathematical model for the system described,
called Alfven sweep maser (ASM), to confirm the above qualitative formulation.
We also discuss the ability of this model to explain observational characteristics
of Pc 1 pearls, such as their morningside predominance, correlation with low
magnetic activity, spatio-temporal and spectral patterns.



1 Introduction

Pc 1 pearl-type pulsations are one of the most regular phenomena in the
magnetosphere. Main features of Pc 1 pearls have been known for many
years [see e.g. monographs by Guglielmi and Troitskaya, 1973; Nishida,
1978). These features are: (1) Periodicity with typical values of a period T' ~
10% 5; (2) Increasing frequency inside a wave packet; (3) Anti-correlation in
conjugate ground-based observation points; (4) Morningside predominance;
(5) Correlation with late recovery phase of geomagnetic storm.

In theory, we know the basic mechanism of Pc 1 generation, which is
cyclotron instability of energetic protons with anisotropic velocity distribu-
tion. Predominance of pearl observations during recovery phase of a storm
is attributed to radial broadening of plasmapause during recovery stage
and associated encounter of previously injected outer ring current protons
in region of enhanced plasma density, that provides conditions for cyclotron
instability [Nishida, 1978]. Temporal characteristics of pearls are most eas-
ily connected with a short Alfven wave packet oscillating between conjugate
ionospheres [Tepley, 1964; Jacobs and Watanabe, 1964). Some spectrum fea-
tures of Pc 1 pearls are understood on the basis of a linear model suggested
by Gendrin et al. [1971], who investigated the evolution of a packet with
account of amplifying and dispersive properties of magnetospheri: playma.
This theory related pearl characteristics to a set of parameters of magne-
tospheric plasma, such as background plasma distribution and temporal
evolution of the instability growth rate. However, processes that lead to a
certain evolution of growth rate are still not well understood.

There are several mechanisms which in principle may contribute to pearl
formation. Olson and Lee [1983] discussed a possibility to relate Pc 1 pearls
with modulation of ion cyclotron instability by hydromagnetic waves. Ob-



servational support of this hypothesis is not evident, in particular, presence
of compressional pulsations of substantial power, correlated with Pc 1, has
not been reported. There is also an idea to explain temporal modulation of
growth rate by existence of a phase-correlated bunch of energetic protons
that provides periodic generation of Pc 1 emissions [Jacobs and Watanabe,
1963; Erlandson et al., 1992}. This explanation requires an external source
of highly correlated proton population which seems a rare occasions dur-
ing storm recovery; observations of bunched helium ions, reported by Mauk
and Mc Pherron [1980), are attributed to energization of those minority
ions through cyclotron interaction with proton-generated cyclotron waves,
but such a process is not passible for protons themselves.

The mechanisms mentioned are based on an external driver for Pc 1 for-
mation. There are also self-consistent processes which may lead to pulsating
character of wave generation and to formation of fine spectral structure. (1)
One of them is related with the background plasma nonlinearity leading to
wave self-modulation [Petviashvili, 1979]. (2) The second mechanism is con-
nected with side-band instability of a quasi-monochromatic ion-cyclotron
wave due to trapping of energetic particles by the wave field [Bud’ko et al.,
1972]. (3) The third mechanism is fast modulation of the instability growth
rate due to quasi-linear pitch-angle diffusion. Evolution of proton cyclotron
instability with account of wave dispersion and particle quasi-linear diffu-
sion, in absence of energetic particle source, was considered by Cocke and
Cornwall [1967); under the action of constant supply of energetic particles
quasi-linear diffusion may lead to a spike-like regime of wave generation
[Bespalov, 1982, 1984; Demekhov and Trakhtengerts, 1986, 1994). Including
the influence of energetic particle distribution on wave dispersion properties
into consideration and taking into account finite time of wave propagation
between hemispheres, one obtains pulsation regimes with frequency modu-
lation and characteristic period equal to wave group period T, [Bespalov,
1984]. (4) The fourth mechanism is connected with the nonlinearity and
selective properties of ionospheric mirrors. In the case o: Alfven waves,
whose wavelength is comparable with ionosphere height, the influence of
ionospheric Alfven resonator (IAR) eigenmodes on the wave reflection is
very important, providing an oscillatory frequency dependence of the re-
flection coefficient [Polyakov et al., 1983; Lysak, 1990, 1993]. The nonlinear
modification of wave reflection coefficient from the ionosphere is caused by
precipitating energetic protons; e.g. the influence of precipitated energetic
protons, resulted from pearl generation, on ionospheric electron density, was
shown by Mende et al. [1980]. They have found the correlation, with the
appropriate time lag, between a pearl packet, a burst of proton precipita-
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tion into the conjugate ionosphere, and corresponding rise of ionospheric
electron density. The mentioned properties of ionosphere reflection coeffi-
cient may result in the formation of fine time and spectral structure of Pc-1
pulsations [Polyakov et al., 1983; Belyaev et al., 1984, 1985, 1987).

All these processes may probably influence the formation of Pc 1 pearls
but none of them is now considered seriously when discussing experimen-
tal results in this area. In the present paper we would like to review the
self-consistent model connected with nonlinearity of ionosphere reflection,
suggested by Polyakov et al. [1983]; Belyaev et al. (1984, 1985, 1987] and
called Alfven sweep maser (ASM). We also discuss the relation between this
model and known experimental data. As we well show below, it provides a
consistent explanation for all main characteristics of Pc 1 pearls that were
enumerated above. In particular, the ASM mechanism, unlike other models
mentioned, explains anticorrelation in time between Pc 1 registrations at
conjugate ionospheres [Saito, 1969)

In the following we will concentrate on the discussion of the principal
features of the ASM model, so we will not take into account several processes
that may also be of a certain importance. In particular, we will discuss only
the quasi-linear theory, and not the nonlinear trapping effects. We think this
is appropriate for low disturbance levels, although at highest observed am-
plitudes of Pc 1 pearls nonlinear bunching may become significant [Bud’ko
el al., 1972). Also we will not consider effects of heavy ions on the cyclotron
instability, assuming some given frequency dependence of the growth rate.
We note that according to observations [Erlandson et al., 1992; Mursula
et al., 1994], Het* ions may have a substantial influence on the frequency
band of pearls. In this paper we discuss the frequency ranges outside of a
gap in cyclotron amplification, situated near the Het gyrofrequency.

2 Summary of Alfven Sweep Maser Model

2.1 Basic equations
2.1.1 [Equations for cyclotron instability

The ASM model is currently based on self-consistent quasi-linear equations
for cyclotron resonant interaction of energetic protons with electromagnetic
waves, proparating parallel to the external magnetic field B. In this paper
we will consider the case

w <K Qp (1)
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where Qp is the proton cyclotron frequency. From the cyclotron resonance
condition

w—QpL = kyyy (2)

combined with an approximate dispersion relation for low-frequency Alfven
waves,
W €
k~ -;YIA nag = h: (3)

we can see that the inequality Ty 3> T} holds where T, is the group pe-
riod of wave packet bouncing between conjugate hemispheres, and T} is the
proton bounce time. So we can distinguish processes for which only group
delay effects are substantial and bounce resonance effects play no role. For
studying such processes we can use the bounce-averaged kinetic equation
for protons, while spatial (along B) inhomogeneity should be taken into
account in wave energy transfer equation.

The inequality (1) means also that pitch-angle diffusion dominates over
the energy diffusion. We thus have the following set of equations:

of 12 ,0f
ot 68*-
—m—ng—é:;-=(7—V)5*+au (5)

where f(t, 1, v) is proton distribution function, J(t, n, v) is the particle
source, n = sin? 0y, 0 is the particle pitch-angle, index “L” denotes values
in the equatorial plane,

-1 2/T5, n S Ney
: T - { 0) " > nCs (6}

e = o~ is the loss cone pitch angle, o is the mirror ratio. In the equa-
tion (5) £ (t, w, z) is the spectral energy density of Alfven waves, V/, is the
wave group velocity, v is wave damping rate, a,, is the external wave source
including spontaneous emissivity; signs =+ refer to waves in £ directions.

The pitch-angle diffusion coefficient D in (4) is determined by the in-
tegration of wave spectral energy density over w and over the length of a
magnetic mirror [Bespalov and Trakhtengerts, 1980}:

_ 8n2e? nb(z)dz £
D(t.ﬂ,v)—-m'%m (_—77) f:w)(
xpnVy & (w = Qp + kvy/T— mhz)) do )



where b(z) = B(z)/BL, vpn = w/k is wave phase velocity, &, = £} + £
The wave growth rate v in (5) is calculated from the equation

Htw,) = 2 vy b(2) / \/m(—) [ oo (®)
X [(-Qg--l)n%%-— ]6(w—-ﬂa+lcv\/in(z)).

w

The formula (8) was obtained integrating the known expression for wave
growth rate [Bespalov and Trakhtengerts, 1980] by parts to exclude the
derivative 3f/0v. It is worth noting that the last term in square brackets
determines the upper frequency of unstable waves, wmax = Awpr/(A +
1), where A is the anisotropy index; we may omit this term if for some
reason, e.g. because of frequency dependence of reflection coefficient, waves
are excited at w € wWinax-

The precipitating particle fluxes S* in the equation (5) are calculated
as

0o ,
st=" [T prd| g, 9)
2 0 a" N=Ne

D?* being determined by (7) but with &, replaced by £,

Equation (4) should be solved with the follrnuing boundary conditions:

flozq, =0 (10)
g- = 11
3" n=nm=1 o ( )

‘The boundary condition (10) corresponds to the so-called weak diffusion
limit [Kennel, 1969; Bespalov and Trakhtengerts, 1980] which corresponds
to sufticiently low level of magnetic disturbance.

The boundary conditions for the wave transfer equation (5) have the
forin

E(Lwl) = REY(w),
(12)
EX(tw, =) = RE~(t,w,-l),

where Ry are reflection coefficients from conjugate ionospheres, and z =
+ 1 are coordinates of ionospheres.



2.1.2 A reflection coefficient from the ionosphere

The role of the ionosphere in wave-particle interaction is exhibited in the
boundary conditions for the equation (5). Those conditions have the form
(12). Tonospheric reflection coefficient R; 2 in Alfven frequency band has
oscillatory frequency dependence, which is determined by the influence of
ionospheric Alfven resonator (IAR) [Polyakov, 1976]. Analytical calcula-
tions of the IAR properties were done by Polyakov and Rapoport [1981];
Trakhtengerts and Feldstein [1981]; Polyakov et al. [1983); Lysak [1988);
also nurnerical investigation was undertaken with account of real altitudinal
profiles of electron number density [Ostapenko and Polyakov, 1990; Lysak,
1993]. The model altitudinal profile of the Alfven wave refractive index
n(h) in the ionosphere was used to determine the spectrum of the IAR
eigenmodes analytically:

h-h
= nJ (ez + exp { 2——5—2}) , 22> hy, (13)
n?‘(l +€2)a hl S z S h?»

where n,4 is the refractive index at the F-layer maximum, ¢ < 1. The lower
ionosphere region h < h; in those calculations was characterized by the

impedance
-1

Zi = -n; [—— —ikaho (g;) ] : (14)

where X p and Iy are height-integrated Pedersen and Hall conductivities
of the ionosphere, Ly = cny /47 is the wave conductivity of the F-layer,
ho is the height of the vacuum gap between the Earth and the ionosphere,
kA = konA = (w/c)’nA.

For this model of n(h) IAR eigenmodes are expressed in terms of Bessel
functions. With the inequalities

o = nakol > 1, 8= =mepp K 1 (15)

N -

which hold in the Alfven wave frequency range, the following formula for
the reflection coeflicient was obtained [Polyakov et al., 1983]:

IRJ? = [-=Bapo + (apo — A) tan m]z + [~Aapo + Btanp; + 1]2
[~Baypo + (apo + A) tan ¢1]° + [Aago + Btang; +1)° '

(16)

where ¢ = o — § A= -nReZ;, B = -njsimz;.
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The value of |R|? has an oscillatory dependence on w [Polyakov et al.,
1983). The position, amplitude and width of its maxima is a function of
ionospheric electron number density, which is strongly influenced by ener-
getic proton precipitation from the magnetosphere. This influence can be
taken into account by writing down ionization balance equations

dn¥/dt = I + QS* — x(n¥)?, (17)
+

where n{" are the height-integrated ionospheric number densities, x i- the
recombination coefficient, I is quiet-time ionization source, S* are the en-
ergetic particle precipitation fluxes, which are calculated according to the
formula (9).

2.2 Simplifications of basic equations for ASM

The formulae for the diffusion coefficient D (7) and growth rate vy (8) are
rather complicated, so analytical and numerical investigation of the full
model would be very difficult. It is also important that the equation set
given in the previous sections includes two different nonlinear effects in-
fluencing the spectrum dynamics, such as growth rate modification due to
quasi-linear diffusion and nonlinearity of ionospheric mirrors. Each of these
effects is not simple, so it would be better to study them separately. In
particular, to make the influence of the IAR on the fine structure formation
more clear, we can consider the situation wl.en quasi-linear effects do not
change wave spectrum substantially. It is usually true if (1) weak pitch-angle
diffusion regime takes place, (2) w < wp and (3) the cyclotron amplification
is not large, I' = §(y/V;)dz < 1.

In this case we can adopt a simplified approach to the description of
particle dynamics in radiation belts which yield more straightforward calcu-
lation of the diffusion coefficient and Alfven wave growth rate. The simplest
form of quasi-linear equations is the so-called two-level, or balance approxi-
mation which is obtained under the assumption of a fixed pitch-angle distri-
bution function of particles. This is correct when the distribution function
coincides with a stable eigenfunction F(1) of quasi-linear diffusion operator:

10 _06F
Tonlay = -FIT (18)

In the balance approximation,.the kinetic equation (4) is replaced by an
ordinary differential equation for energetic particle content in the magnr*o-
sphere;

— =-5%41 (19)
)



where N = mo [ fTyv® dvdn is the number of particles in a flux tube with
the unit cross-section at ionosphere, and precipitating particle flux ST =
St + S~ can be represented, according to (7) and (9), as

00 ]
S® = /0 /_ '¢1(z,w)8fdzdw (20)

where ¢1(2,w) is found from (7) and (9) by substituting the eigenfunction
F (18) instead of f. The growth rate v in the wave transfer equation (5)
should also be calculated with the preset distribution function f = F and
may be written as follows:

y= -]%QBL $2(z,w) (21)

where the index “c” refers to the background plasma. the dependence of
#2(2) is essentially the same as of the function ¢,(z) in (20). For analytical
investigations discussed in the following sections, these functions will be,
where necessary, approximated by a rectangle:

$1,2(2,w) = (2d) " 01,2 (w)[H (2 + d) - H(z — d)] (22)

H(z) is the Heavyside step function.
These simplifications make it possible to obtain explicit solutions for
stability analysis of the self-consistent set of ASM equations.

3 ASM Dynamics as Related to Characteris-
tics of Pc 1 Pearls

3.1 Stationary solution of the ASM equations

The ASM equations (5), (17), and (19), together with the boundary condi-
tions (12), have a stationary solution, corresponding to a dynamical balance
between the energy supply via energetic proton source and energy loss due
to particle precipitation into the ionosphere and wave damping. We will
consider the formation of Pc 1 pearls as a consequence of an instability of
that stationary solution, so it is useful to write it down explicitly.

Integrating the wave equation (5) and taking the boundary conditions
(12) into account, we obtain the following relation:

+ — [ + .
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where

:h/’e (70,2) = f ‘e=FGo(8 z )d’ + R- R+e4l"nf=::' eFGo(e’ )%7’_ (24)
+ R e Go(Fha) [F! £ Go(FLs )gvz_
where Go(21,22) = f v0dz/V,, 70 = 7(No) is the stationary local growth
rate, ['o = Go(0,1) is "the stationary wave intensity gain on the pass from
the equator to the 1onosphere
We see that £ depend on stationary values of To o No, and Ry (nf)

These may be obtained using the equations (17), (19), and (16), (20). They
are transcendent equations including the integration over w and z. Finding
n}t is greatly simplified for the case of symmetric ionospheres, then we have
Sg = S5 = So; from (19) we obtain

So = Io/2 (25)
(nf)* = (n7) = x~'(I + QLo/2) (26)

Thus we know ionosphere parameters and may calculate the reflection coef-
ficients. The flux So depends on £, so we must solve equations (23) and (25),
to determine wave amplitude and stationary content of energetic protons in
the magnetosphere.

At a, — 0 the stationary frequency spectrum &; formally approaches

S-function at the frequency wp, corresponding to the maximum of total
amplification:

& — Eo(2)8(w — wo)
wo = {w| O[R4+R-€'T)/0w = 0} @7
In this case the stationary value of N is determined by the relation
(R"’R-e‘ro)mgx = l (28)

At small a,, the stationary wave spectrum has a narrow maximum at w = wy,
where 1 — RyR_efT* & 1. So the physical sense of the equation (27)
is that the stationary spectrum may be narrow as compared with other
frequency scales, such as the amplification line width and the scale of R4 (w)
variation; at the same time it may remain inside the applicability limits
of the quasilinear theory. The case of relatively narrow stationary wave
spectrum is important because all the integrations over w are then greatly

sitnplified, and rather simple and physically clear analysis of the stationary
state stability is possible.
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3.2 Pulsating regime of Pc 1 generation in adiabatic
approximation

Because the equations for ASM are rather complicated, we investigate their
features step by step. First consider the simplest model taking into account
only nonlinearity of ionospheric mirrors on the action of Alfven ion cyclotron
maser (Polyakov et al., 1983]. For that we will use the balance equation (19)
for particles, and average the wave equation (5) over group period T}, to
obtain the “adiabatic” approximation

%o = [3w) - 16, + a0 (29)

where ¥ = T, ! §(7/V;)dz = Qpr(N/N.) (d/1) p2(w) (see (21) and (22)),
v=T;"'|InR\R,|.

We will review the results for adiabatic approximation very briefly, to
understand the onset of undamped Pc 1 pulsations via the ionosphere non-
linearity, and to be able to compare these results with a more elaborate
model taking group delay effects into account. For small a,, stationary
wave spectrum is narrow, w = wo, 80 let us integrate (29) over w, to get

2 (= w)E+a (30)

E = [&,dw, ym = 4(wo), vo = v(wo). In this case the precipitat-
ing particle flux is written as [Bespalov and Trakhtengerts, 1980): S =
(L /w)Ym NE[/Wy, Wy is the energy of protons. During the cyclotron
instability, parameters of ionosphere are changed under the influence of
precipitated energetic protons. According to (16), this causes variation of
the reflection coefficient R(w). Near the steady state we may-take these
variations into account by expanding 9m and vp over n; — ng:

a . 0vm
vo = oo + -a—':;(m' -n9);  Ym = Tmo+ %m(m = no) (31)

The analysis of stability of the steady state of the equation set (17),(19),
and (30) is straightforward; it gives the following criterion for transition of
ASM from stationary to spike-like generation:

vo1rQNo 0
1—1-—"-1%6-%3;’- ]n('ymuo) >1 (32)
-2
where 77! = 2xno, Q% = Ymo/To is the frequency of damped relaxation os-

cillations in absence of ionosphere nonlinearity [Bespalov and Trakhtengerts,
12



From equations (23) and (24) we can obtain that for sma.l a,

(Roe2r°) - >~ l - Aa
A, ~ auTy sinh l‘gs e 1 T - 2 (42)
a= ( oL To w=wg < ! - V:
Thus equation (41) is satisfied if
A, 1
A= An—30n+‘2_’ Q,.=1r(n+-2-) n=0,1,2,... (43)

(A = AMl/V,). Substituting (43) into (39), we find

OR E()el-‘"'“‘x )
w=wo

A=A.,+A¢=Q(yu (44)

A 5;1-: A4,
where we can use the zero-order approximation, A, = iQ,, at the right-
hand side, to obtain a first-order approximation for A. Thus equations (43)
and (44) give an explicit complex solution of the characteristic equation
(39) for antisymmetric modes. This formula is valid until the resulting A
is small, |A| < 1.

The term g, (see the Appendix) depends on z-profile of ¢1(2,w); using
the rectangle approximation (22), we get

sinh Ty
Ta

Taking into account that, according to (20), (22)-(25), So = Io/2 = 2l¢10Eo,
we get the following final expression for A:

Jur =¢10-20- (45)

_ Arro + szi
ReA, +A, = -R (AZ + Q3)(T2 + 02) (“62)
_ Qn(Ar - PO)
JmA, = -R (AZ + Q2)(T2 + Q2) (ueb)
A = V,-’/Vg
(46¢)
on L (Lt Bl AY)
Q 0 (an‘ Vg R(l - R) w=wo (47)

If we neglect A, on the left-hand side, then the sign of ReA = Re(A,) V,/!
is determined by the sign of ionosphere reflection nonlinearity, 8R/8n;. The
15



stationary state is unstable for antisymmetric disturbances if dR/9n; < 0.
Let us explain this fact by analyzing equation (60). For purely antisymmet-

ric disturbances e(") = (e} + eg) = 0, so from (58) and (65) one obtains
that Ny =0. Thus we have

eX(2) = i-zl-exbeia*(‘), ex(z) = e, sinh(Taz/l) (48)

where ey, = e}, = —ey ;. Substituting (48) into (62), and using (22), we
get
sinh Ty
ny = ?Qhﬁme,\,,m
+R (49)

= 2Ql¢1ov; ex (&) (To — i )(Ar +i9,)

Analyzing the phase of the complex denominator on the right-hand side, we
see that the maximum of an incident wave always corresponds to negative
variation of n; (at A, = I'p they are in opposite phases). So at 8R/0n; < 0
an antisymmetric wave disturbance coming at 1onosphere level always meets
an increase of the reflection coefficient.

For the symmetric disturbance mode, e(*), the simplified dispersion re-
lation (39) after all transformations acquires the following form [Belyaev
et al., 1984):

RA  sinh(T))
FA + Ar PA

(here an additional assumption 'y < 1 was used). One may see that the
solutions to this dispersion relation are imaginary at |T»| 3 1, i.e. sym-
metric disturbances with spatial scales A < 2! are stable for R <« 1. For
the case |[I'a| <« 1 we obtain the adiabatic approximation discussed in the
section 3.2, which has unstable solutions if the nonlinearity of ionosphere
reflection exceeds a rather high critical value, R > R..

If the parameters of conjugate ionospheres are not the same, then the
antisymmetric and symmetric modes are not independent, so the analysis
is more complicated, and we will not consider it in details. An approximate
solution, obtained by Belyaev et al. [1985] for the case of weak coupling
between the modes, showed that the instability of the stationary state of
ASM is possible even if ionosphere nonlinearities are of opposite signs, but
in this case it is weaker than for similar ionospheres. Symmetric disturbance
modes are damped, except the adiabatic mode, which is not sensible to the
difference between ionospheres, and is determined by parameters of total
reflection coefficient, R = Ry R_ (see section 3.2).

16
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1976; Davidson, 1979], To = No/So is the particle lifetime at the stationary
state.

Thus in adiabatic approximation ionosphere nonlinearity may cause a
spike-like regime of Alfven wave generation if it provides a growth of the
total gain during the initial stage of the instability, which exceeds the damp-
ing rate of relaxation oscillations. As shown by Polyakov et al. [1983], most
favorable conditions for (32) to be satisfied exist at the morningside during
quiet periods (see also section 4); however the inequality (32) turns out to be
rather restrictive, so from the adiabatic model we get rather high threshold
for formation of Pc 1 pearl emissions via the ASM mechanism.

3.3 Spatial structure of an unstable wave packet

In this section we will show, on the basis of a linear stability analysis, that
the combination of finite wave propagation time between ionospheres and
nonlinearity of ionospheric mirrors gives preference to the formation of one
wave packet oscillating in the magnetosphere. In the following we will use
the balance approximation, so variation of the distribution function includes
only variation of the number density, according to the equation (19). Lin-
earize the initial equations and boundary conditions near the stationary
solution, discussed in the section 3.1 and introduce the Laplace transforma-
tion:
ioo
u(t) = uo+ un, |uo| K up u(t)= exp(At)uy dA (33)

=300

where u stands for N, £% or n¥.
It is convenient to introduce the symmetric and antisymmetric distur-

bance modes according to the transformation
") = ef ke3 (34)

One can easily understand that the antisymmetric mode corresponds to the
tendency of formation of one oscillating wave packet, whereas the symmetric
mode corresponds to at least two packets placed symmetrically relative to
the equator.

‘T'he most significant details of calculations for the linearized ASM set
of equation are given in the Appendix. Consider first the simplest case
when the hemispheres are symmetric. Then the linearized ASM equations
are split into two independent sets for symmetric (e*) and asymmetric (%)
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modes:

(a,8) _ K(u,‘) (a,8)
Y m / gureyy ~ dw (35)

where 'y = f‘;('yo - A)dz/V,,
OR &y; + Ao
e _ oL eTo+Ta
Ky = Qan. A+ v,

c

(36)

K3,

(37)
x[A+Tyt =Py

Py = N! fo°° hux dw, the expressions for all incoming values are given in
the Appendix.

Multiplying the equations (35) by g, and integrating by w, we will get
the characteristic equations for finding A:

g‘W\K(a ,8)
1+ R exp(2l‘,\)

From equations (35)~(37) we see that the solution for wave disturbarice
includes a part, determined by a stationary wave spectrum, &;,, and an
addition due to external wave sources a,. At small a,, the frequency spec-
trum of a stationary solution &, is relatively narrow (see section 3.1), so
we may approximately perform an integration in (38) and obtain

£ _
(1 oy R (2P*))w=w ‘Ey+As()) =1 (39)

where Eg = [ &y dw, As(}) is a small addition due to a,,, which is neglected
below, and

=1 (38)

(@) _ OR g, ,\er‘"w*
x;\w = Qan‘ A+v, (40&)
M + (94 +9-)/N.
K:(:) Aﬂ,\_'_ :(;;;I-l —!7P'\)/ ¢ (40b)

Let us consider the asymmetric modes. If the nonlinearity of the iono-
sphere reflection is small enough, so that ICA )Eo & 1, then the solution of

equation (39) is near the pole of its left-hand side:
1+ Ree™™| _ =A<1 (41)

wW=wo
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To summarize, in this section we have shown that the growth of antisym-
metric wave disturbances is favored at 38-”5; < 0, and that the fastest growing
mode is that with n = 0, which corresponds to anti-correlated oscillations
of wave intensity at conjugate ionospheres. This is confirmed by an illustra-
tion shown in Figure 1, where we plotted profiles of this mode (A = Ap) for
different time moments. By definition (33) e(z,t) = e),(z)e*e?, where we
use the formula (48) for e),(z). Plotted profiles were multiplied by e(ReAt),
to exclude growth of the disturbance amplitude. The upper panel shows
deviations of total wave intensities, and the lower panel presents deviations
of intensities of downward and upward waves, e} and e}, separately at one
time moment. Negative signs for ef obviously correspond to the decrease of
the amplitude relative to the stationary solution. These plots are obtained
for ReAg = 0.114, JmA, =~ 0.02; these values, in particular, correspond to
the following choice of the dimensional parameters: Iy = 3-10* em~2 57!,
x =10"% em® 57!, Q@ = 1072 cm™~!, I/V, = 25 s (this corresponds to total
period T = 27, = 100 8), & = —2.107% cm®.

3.4 Dynamics of Alfven wave spectrum in ASM

In the previous discussion we considered small deviations from a station-
ary state of Alfven sweep maser and determined the conditions when this
steady state may be unstable due to nonlinear change of ionosphere reflec-
tion cocfficient. Using results presented, it is possible to find the evolution
of a wave packet at small deviations from the stationary state. In general,
it may be done by expanding the disturbance profile over discrete series of
eigenfunctions ef\""), for which eigenvalues have been found above. It is
clear, however that in the case of unstable stationary state the mode with
the highest growth rate will dominate after some time. So let us follow the
evolution of the antisymmetric disturbance with n = 0 (see equation (46)).
It is easily to find that if e(*) = 0, then

et (1) = 0.5e4 exp(T»), ex(l) = —ef(exp(=2Ty)  (51)

Taking only the fastest growing mode, n = 0, Agl/V; =~ ir+ A (see equation
(46)). we have
Eo., exp(Aot)

+ ~
S (L) % o e TR,

(52)

where comnplex coefficient aq is weakly dependent on w. Let us expand the
frequency dependence Ty(w) = 2I/V,(w) near the central frequency of a
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Figure 1: Profiles of the most unstable disturbance (antisymmetric mode,
n = 0) for different time moments, with exponential growth of the am-
plitude excluded. Upper panel: full disturbance, ey = e}'e;; lower panel:
separate profiles of downward (e}) and upward (ey) waves for the right-
hand hemisphere; ReAg = 0.114, JmAy ~ 0.02.
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packet, w = wq: s
o7, W—-w 53
Ow ( ) (53)

wo

Ty(w) = Tgo(w) +

For the sake of simplicity the stationary wave spectrum &, (see section 3.1)
may be approximated by the Gaussian function

£o, = Eon™ 205 exp {—(w — wo)?/ AL} (54)
Then from (52) we obtain
e*(l,t) = |eo(w)| exp[iv(w) + (im + Ao1)t/Ty)

ATy r A, (55)
CoEy exp(—z?%/z3)

T A2 [(As+ Bo1)? + (vz + Ag2)?)H?

where Cy o ag, z = (w/wo) — 1, v = 1wedInTy /8w, zo = Aufwo, As =
(1 = Roe®™®)w=wo, Ao(1,2) are real and imaginary parts of Ag, which are
determined by (46) at vz < |A|; it is important that they are independent
on w. Near the center frequency of a wave packet, |w —wo| < Ay, temporal
evolution of maximum intensity point is found from the condition of phase
stationarity:

$(w) + /Ty = C (56)

In particular, when ¥ < 7, we obtain

t An+A,
Ty OInT, /0w

From (46) we know that (Ag; +A,;) « —8R/8n;. Thus we see that at linear
deviations from the stationary solution to the ASM equations the nonlin-
earity of ionosphere reflection contributes substantially to the evolution of

a wave frequency of a Pc 1 packet in presence of a group time dispersion,
0T, /0w # 0.

we(t) = we(0) = (87)

4 Discussion

We considered a model for Pc 1 pearls, which attributes their formation to
the interaction between magnetosphere and ionosphere systems. Periodic
regime of Alfven wave generation and formation of wave packets with fre-
quency drift were related with peculiarities of ion cyclotron instability with
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account of nonlinearity of the ionosphere reflection coefficient depending
on the flux of precipitated energetic protons that give rise to Pc 1 waves.
The most straightforward verification of the model would be experimental
determination of presence or absence of wave signal reflected from the iono-
sphere, and investigation of its frequency/time spectrogram in connection
with evolution of the ionosphere. Such a study is difficult to perform on the
basis of the data reported to date, since satellite recordings of Pc 1 pearls
are much more rare than ground-based ones, and they display pearl features
not as clearly [Perraut, 1982; Guglielmi et al., 1992; Erlandson et al., 1992].
Erlandson et al. [1992] analyzed Viking data and found a succession of 7
downgoing pearl packets, the reflected (upgoing) signal being 5-10 times
less. This amplitude of reflected waves is small from the point of view of
observations, because such signals are difticult to analyze. However, from
the point of view of wave generation mechanism, the reflection coefficient
of 0.1-0.2 is not small, because the path-integrated gain necessary for the
instability is then only T' o~ 2.4-1.3, whereas I' > 10 is usually needed for
a signal to be amplified from background noise level on one path through
interaction region.

In absence of direct verification of the ASM model, based on satellite
data, let us address to well documented statistical features of pearls listed
in the Introduction. First, we will discuss temporal characteristics of pearls.
As we have seen from the theory presented, wave propagation time between
conjugate hemispheres, Ty, turns out to be an intrinsic nonlinear timescale
for a system including ionospheric mirrors with variable reflection coefficient
(see the dispersion relation (43). We should note that wave group period
T, appears also in the nonlinear mechanism connected with quasi-linear
modification of the distribution function of energetic particles, discussed
by Bespalov [1984). An important consequence of the ASM mechanism is
predominance of an antisymmetric shape of wave disturbance relative to
the equator, which corresponds to only one oscillating wave packet, with
its mirror counterpart suppressed (see section 3.3). This feature, which
matches well the observations [Saito, 1969], is rather difficult to explain
naturally without involving the ionosphere influence into consideration; it
disinguishes the ASM model from other mechanisms.

Besides the notion of an oscillating wave packet, also bouncing pro-
ton bunches were discussed as possible candidates for the pearl formation
[Jucobs and Watanabe, 1963). This mechanism was recently recalled by Er-
landson et al. [1992], who analyzed a Viking recording of several subsequent
pearl packets at L =3.87-4.10 and found, that the | eriod dependence on
L-shell was substantially weaker than the calculated dependence of wave
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transit time, Ty; they considered the proton bounce mechanism as an alter-
native one, which may fit better the registered L-dependence of the pearl
repetition period. We note that pearl wave packets are formed near the
plasmapause, and thus they have a finite transverse extent determined by
waveguide properties of the plasmapause [Dmitrienko and Mazur, 1985,
1992). According to the latter paper, this extent is of order 10® km near
the equator, which corresponds to AL =~ 0.15. We see that the observa-
tions by Erlandson et al. [1992] lie within the limits of transverse extent of
an Alfven wave packet; at these distances, generally speaking, the packet
transit time does not obey a simple dependence on L, caclulated according
to the geometrical optics, rather it should be weaker, so this is one possible
explanation of the observations discussed.

Let us make some quantitative estimates of the conditions for the spike-
like regime of the ASM. With account of equations (7),(9), and (20), the
parameter of nonlinearity of the ionosphere, R, may be written as R ~
QU/V)(@R/dn;) Io, 1o = 2So = wo [ JTyv¥dvdn (J is the source of en-
ergetic protons). From the dispersion relation (48) we see that for the
instability, OR/8n; should be negative, and the growth rate of the distur-
bance is proportional to |R|. As shown by Polyakov et al. [1983]; Ostapenko
and Polyakov [1990], the negative sign of OR/8n, is realized in the morn-
ing or evening sectors, where |[ReZ;| 3 JmZ; ~ n;' (see (14)). Typical
values of dR/8n; are (2-3)-10=% cm3. On the day side R/9n; is rather
small. The latter is also true at all local times for periods of high distur-
bance level when the IAR features are not very pronounced. For proton
energy Wo = 200 keV we have Q & 10~2 cm™~!; for proton source flux
Io ~ 3-10* em~2 ¢~! we obtain ReA ~ 3.10~2 ¢c~!; so for realistic values of
parameters, the most unstable disturbance grows during several wave tran-
sit periods (T = 2Ty, ~ 100 s). If we estimate the criterion for instability
of adiabatic mode (32), then for the same parameters we get the inequality
OR/On; » 10~3 cm?; this is rather restrictive condition, so the estimations
confirm that in the ASM mechanism a disturbance in the form of a single
wave packet oscillating between conjugate ionospheres is the most unstable
one.

We have noted above that the properties of the IAR favour the forma-
tion of pearl-type Pc 1 emissions at the morningside and the eveningside
magnetosphere during quiet periods, when the derivative #8R/8n; may have
sufficiently large negative values. From theoretical point of view, there is
no substantial asymmetry between the parameters of the IAR in the morn-
ing and the evening sectors; experimental results of the investigation of the
TAR characteristics [Belyaev et al., 1989] also did not reveal such asymme-
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try, although those studies have been performed only at rather low latitudes
(L =~ 2.65). There is, however, a well-known asymmetry in the structure
of Pc 1 emissions between the morning and the evening sectors [Guglielni
and Troitskaya, 1973; Nishida, 1978]. To our mind, it is related with the
difference in the mechanisms of supply of energetic particles to those sectors
at different phases of a storin. Eveningside plasmasphere is subject to injec-
tion of energetic protons mainly at the main phase, when the ionosphere is
disturbed, and the influence of the nonlinearity of reflection coefficient, dis-
cussed in this paper, is not so significant. Accordingly, during main phases
of storms Pc 1 emissions, connected with plasmasphere, are recorded pre-
dominantly in the evening and are most often of IPDP type [Pikkarainen
et al., 1983; Nishida, 1978). One possible mechanism of IPDP formation is
quasi-linear dynamics of slow-wave cyclotron maser, discussed by Bespalov
[1984]. these cyclotron emissions are prcbably responsible for the evolution
of the asymmetric ring current [Cornwall et al., 1970, 1971; Bespalov et al.,
1990, 1994). During periods of low disturbance level the main mechanism,
providing the interface of energetic protons with plasinasphere region, is
convection and diffusion across the L shells. Under these conditions there
are two factors leading to the asyminetry between the morning and the
evening sectors. One of them is connected with the direction of combined
electric and magnetic drift, which is counter-earthward in the evening and
towards the Earth in the morning, thus giving higher acceleration and sup-
ply rates of protons at the morning side. The other factor is the asymmetry
of plasmapause, which has a bulge in the evening; thus the evening-side
projection of the plasmapause is at higher latitudes, where, according to
present notions, the oscillating frequency dependence of ionosphere reflec-
tion coefficient due to the influence of the IAR is less pronounced, becasue
the IAR is disturbed by high precipitation fluxes at subauroral and auroral
latitudes. However, the detailed knowledge of the dependence of the IAR
properties on latitude and longitude is atill absent, so further experimental
investigations will provide a test for the considerations presented above.
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Appendix

The formal solution to the linearized and Laplace-transformed equation for
wave energy (5) is written as

: ’

where Gx(z) = Ga(0,2) = [ (10 ~ M) dz/V,, ef, = e (0,w.
The linearized boundary conditions for waves (12) have the form

OR¥
ex (FI) = R (F)) + By ™ XET(F) (59)
and the linearized ionosphere ionization equations are
ny ta4+vE)=Q S‘t (60)

where v¥ = 2xn3’. S is the Laplace component of the precipitated flux
variation. Equations (59) and (60) together give:

et el) = R + QO S s (61)
We omit a lengthy procedure of calculating S via ey, Ny. The final result
is:
1 5 - .
St = Py [reF £ A7 ex ¥ ade}] (62)

where e,\ = f¢10€,\ dzdw, and AE = So /Ny are the stationary preclplta-
tion rates. For symmetric ionospheres we have A} = Ay = T5'/2, T) is
the particle lifetime at stationary state.

Let us further concentrate on the case of symmetric ionospheres. Substi-
tuting (62) and (58) into (61) and performing the necessary transformations,
one gets two equations for wave amplitude variations:

(a) — aR 80[, + Ao erﬂ"'rx ( )

A E 57: A4+ v, 1+ Re?l» ¢10€,\° dz dw (63)

() _ or or + Ao efota »

S = Qo A4v, 11— Re2x ,\_'_T- broe) dzdw  (64)
+N [(94&0p + A4)RoeTo*Ts 49 &, — A_ ]

where
g9+ = QBL f é2(2)etA D dzfV,
Ag = Qg fn P2(2)eEM) [ a e*""(‘)%- g

q 9



A(2) = fo' Adz/V,, Ao = f(: a e~ CGo(*") t‘;‘:. The equation for Ny may be
obtained by linearizing (19):

¢we(;)dzdw
= 65
m= Lo (6)

We see that symmetric and asymmetric disturbance modes are indepen-
dent, and that the asymmetric disturbance does not depend on variations
of the energetic particle content.

For further calculations let us perform the integration over z in (63) and
(64) With account of (58) we get:

f.'., ¢1065\°) dz = gwxeﬁ"b’

66
f:‘ ¢1035\') dz = gwxef\‘z + %‘}huk (66)

where .
Jur = f_‘¢1oe"a*(‘)dz
JLi#10 f; Eo(2")em G eOr
Finally, putting equations (63), (64), (65), and (66) together, we get the
linear equations (35).

th

References

Belyaev, P. P, S. V. Polyakov, V. O. Rapoport, and V. Y. Trakhtengerts, On
the fine structure of the Alfven maser radiation, Geomagnetizm i Aeronomia,
24(2):242-248, 1984.

Belyaev, P. P., S. V. Polyakov, V. O. Rapoport, and V. Y. Trakhtengerts, Pecu-
liarities of wave generation in a non-symmetric Alfven maser, Geomagnetizim i
Aeronomia, 25(4):603-607, 1985,

Belyaev, P. P, S. V. Polyakov, V. O. Rapoport, and V. Y. Trakhtengerts, Dy-
namic frequency spectrum formation of the Pc-1 pulsations, Geomagnetizm i
Aeronomia, 27(4):652-656, 1987,

Belyaev, P. P., S. V. Polyakov, V. O. Rapoport, and V. Y. Trakhtengerts, Experi-
mental study of the resonance spectrum structure of atmospheric electromagnetic
noise background in the range of short-period geomagnetic pulsations, /zv. Vuzov
— Radiofizika, 32(6):663-672, 1989.

Bespalov, P. A., Self-excitation of periodic cyclotron instability regimes in a
plasma magnetic trap, Physica Scripta, 2:576-679, 1982.

Bespalov, P. A., Passive mode synchronization in masers with nonequidistant
spectrum, J. Ezp. Teor. Phys., 29(9):1117-1128, 1984,

Bespalov, P. A., A. Grafe, A. G. Demekhov, and V. Y Trakhtengerts, Some
aspects of the asymmetric ring current dynamics, Geomagnetizm i Aeronomia,
89(5):740-746, 1990.

24



Bespalov, P. A., A. Grafe, A. G. Demekhov, and V. Y. Trakhtengerts, On the role
of collective interactions in asymmetric ring current formation, Ann. Geophys.,
12(5):422-430, 1994,

Bespalov, P. A., and V. Y. Trakhtengerts, The dynamics of the cyclotron insta-
bility in a magnetic trap, Fizika Plazmy, 2(3):397-406, 1976.

Bespalov, P. A., and V. Y. Trakhtengerts, The cyclotron instability in the Earth
radiation belts, in: Reviews of Plasma Physics, edited by M. A. Leontovich,
vol. 10, pp. 88-163. Energoatomizdat, Moscow, (English translation: Plenum
Publ., N.Y., 1986), 1980.

Bud’ko, N. 1., V. . Karpman, and O. A. Pokhotelov, A nonlinear theory of
monochromatic circularly polarised ULF and VLF waves in the magnetosphere,
Cosmic Electrodynamics, 3(1):165-183, 1972,

Cocke, W. J., and J. M. Cornwall, Theoretical simulations of micropulsations,
J. Geophys. Res., 72(11):2843-2856, 1967.

Cornwall, J. M., F. V. Coronity, and R. M. Thorne, Turbulent loss of ring current
protons, J. Geophys. Res., 75(25):4699-4709, 1970.

Cornwall, J. M., F. V. Coronity, and R. M. Thorne, Unified theory of SAR arc
formation at the plasmapause, J. Geophys. Res., 76(19):4428-4445, 1971.

Davidson, G. T., Self-modulated VLF wave-electron interactions in the magne-
tosphere: A cause of auroral pulsations, J. Geophys. Res., 84(A11):6517-6523,
1979.

Demekhov, A. G., and V. Y. Trakhtengerts, Several questions of radiation dynam-
ics in magnetic traps, Radiophys. and Quantum Electr., 29(9):848-857, 1986.

Demekhov, A. G., and V. Y. Trakhtengerts, A mechanism of formation of pulsat-
ing aurorae, J. Geophys. Res., 99(4):5831-5841, 1994,

Dmitrienko, I. S., and V. A. Mazur, On wave guide propagation of Alfven waves
at the plasmapause, Planet. Space Sci., 33(5):471-477, 1985.

Dmitrienko, 1. S., and V. A. Mazur, The spatial structure of quasicircular Alfven
modes of waveguide at the plasmapause: Interpretation of Pc 1 pulsations,
Planet. Space Sci., 40(1):139-148, 1992,

Erlandson, R. E., B. J. Anderson, and L. J. Zanetti, Viking magnetic and electric
field observations of periodic Pc 1 waves: Pearl pulsations, J. Geophys. Res.,
97(A10):14823-14832, 1992,

Gendrin, R., S. Lacourly, A. Roux, J. Solomon, F. Z. Feigin, M. V. Gokhberg,
V. A. Troitskaya, and V. L. Yakimenko, Wave packet propagation in an am-
plifying medium and its application to the dispersion characteristics and to the
generation mechanisms of Pc 1 events, Planet. Space Sci., 19:165-194, 1971.

Guglielmi, A. V., F. Z. Feigin, and Y. P. Kurchashov, Ponderomotive forces
and trajectories of Pc 1 geomagnetic pulsations, Geomagnetizm i Aeronomia,
32(6):48-53, 1992.

Guglielmi, A. V., and V. A. Troitskaya, Geomagnetic pulsations and diagnostics
of magnetosphere. Nauka Publ., Moscow, 1973.

Jacobs, J. A., and T. Watanabe, Trapped charge particles as the origin of short
period geomagnetic pulsations, Planet, Space Sci., 11:863, 1963.

Jacobs, J. A., and T. Watanabe, Micropulsation whistlers, J. Atmos. Terr. Phys.,
26:825-829, 1964.

25



Kennel, C. F., Consequences of a magnetospheric plasma, rev. Geophys. and Space
Phys., 7(1/2):339-419, 1969.

Lysak, R. L., Theory of auroral zone Pi B pulsation spectra, J. Geophys. Res.,
93:5942, 1988, ’

Lysak, R. L., Electrodynamical coupling of the magnetosphere and ionosphere,
Space Sci. Rev., 52(1):33-87, 1990.

Lysak, R. L., Generalized model of the ionospheric Alfven resonator, in: Auroral
Plasma Dynamics, edited by R. L. Lysak, vol. 80 of Geophys. Monogr, Ser. AGU,
Washington, DC, 1993.

Mauk, B. H., and R. L. Mc Pherron, An experimental test of the electromag-
netic ion cyclotron instability within the Earth’s magnetosphere, Phys. Fluids,
23(10):2111-2127, 1980,

Mende, S. B., R. L. Arnoldy, J. Cahill, L. J., J. H. Doolittle, W. C. Armstrong, and
A. C. Fraser-Smith, Correlation between A4278-A optical emissions and a Pc 1
pearl event observed at Siple station, Antarctica, J. Geophys. Res., 85(A3):1194~-
1202, 1980.

Mursula, K., L. G. Blomberg, P.-A. Lindqvist, and G. T. Marklund, Dispersive
Pc 1 pearls observed 'by Freja, Geophys. Res. Lett., Submitted, 1994.

Nishida, A., Geomagnetic diagnosis of the magnetosphere. Springer-Verlag, 1978,

Olson, J. V., and L. C. Lee, Pc 1 wave generation by sudden impulses, Planct.
Space Sci., 31:295, 1983.

Ostapenko, A. A., and S. V. Polyakov, The dynamics of the reflection coeflicient
of Alfven waves in Pc 1 ra.ge from ionosphere by variations of electron con-
centration of the lower ionosphere, Geomagnetizm i Aeronomia, $0(1):50-56,
1990.

Perraut, S., Wave-particle interactions in the ULF range: GEOS-1 and -2 results,
Planet. Space Sci., 30:1219, 1982,

Petviashvili, V. I., Nonlinear waves and solitons, in: Voprosy Teorii Plazmy (Re-
views of Plasma Physics), edited by M. A. Leontovich, vol. 9, pp. 59-82. Moscow,
Energoatomizdat, 1979.

Pikkarainen, T., J. Kangas, B. Kiselev, N. F. Maltseva, R. Rakhmatulin, and
S. Solovjev, Type IPDP magetic pulsations and the development of their sources,
J. Geophys. Res., 83(A8):6204-6212, 1983.

Polyakov, S. V., On the properties of the ionospheric Alfven resonator, in: KAPG
symposium on Solar-Terr. Phys., vol. 3, pp. 72~73, Moscow. Nauka Publ., (in
Russian), 1976.

Polyakov, S V., and V, O. Rapoport, lonospheric Alfven resonator, Geomagnetizm
i Aeronomia, 21(5):816-822, 1981.

Polyakov, S. V., V. O. Rapoport, and V. Y. Trakhtengerts, Alfven sweep maser,
Fizika Plazmy, 9(2):371-378, 1983.

Saito, T., Geomagnetic | ilsations, Space Sci. Rev., 10:319-412, 1969,

Tepley, L., Low-latitude observations of fine-structured hydromagnetic emissions,
J. Geophys. Res., 69(11):2273-2290, 1964.

Trakhtengerts, V. Y., and A. Y. Feldstein, Influence of Alfven velocity inho-
mogeneous profile on magnetospheric convection stratification, Geomagnetizm
1 Aeronomia, 21:951, 1981,

26



