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We consider the energy operator of n pseudorelativistic electrons in
the field of k fixed nuclei in the space of functions, having arbitrary permu-
tational and point symmetry. For this operator we found the location of
essential spectrum and — when the total system charge is nonnegative —
the leading term of the discrete spectrum counting function asymptotics.

(©HayyHo-nccnenoBaTenbCKNH pagHOPUBUIECKHH HHCTHTYT



INTRODUCTION

In this paper we study the spectral properties of pseudorela-
tivistic (PR) hamiltonians H, of the systems Z,, consisting of n
electrons in the potential field of k fixed centers (nuclei). For PR
operators their potential parts are nonrelativistic (NR), but the ki-
netic parts are relativistic operators. PR operators are nonlocal and
namely this fact generates additional difficulties at the study their
spectra as compared with NR operators for the same quantum sys-
tems. In spite on this fact many results, which were obtained early
for NR systems Z,, and their operators, are proved later for PR
operators. In particular the essential spectrum for PR operators
H,, was found without symmetry account and with account of per-
mutational [2] and rotational — respect to the groups 0*(3) and
O(3) — symmetry for £ = 1 [3]. The discrete spectrum structure
of H, (including the spectral asymptotics) was discovered for the
same cases for neutral and positive charged systems [6, 5, 3]. But
for the important case k > 2 (the case of molecules with infinitely
heavy nuclei) the results on the spectrum with the rotational sym-
metry account were obtained only for NR case [4]. For k > 2 the
rotational symmetry of the system Z,, and hamiltonian H,, is not
connected with the groups O*(3) or O(3) (as for k£ = 1), but with
some (mainly finite) subgroup Fj from O(3). This subgroup is de-
termined by the positions of identical nuclei; the symmetry with
respect to group Fj is named by POINT symmetry.

Here we consider PR operators H,, at any k in the spaces of func-
tions, having arbitrary fixed types of permutational and POINT
symmetry. In the paper for these operators

a) location of the essential spectrum is discovered (Theorem 1);

b) two-sided estimates of the discrete spectrum counting func-
tion are obtained in the terms of counting functions some NR two-
particle operators (Theorem 3);

c) the leading term of the spectral asymptotics is found (Theo-
rem 4).



We only formulate our results and consider them, but do not
adduce the proofs. It is connected with the inconvenience of the
existing proofs (similar proofs occupy 30 pages even without sym-
metry account [6]) and with our hope to simplify them.
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1. OPERATORS

1.1. We consider the system Z, = {1,...,n} of n pseudorela-
tivistic electrons in the potential field of k nuclei, having infinitely
heavy masses. Let e < 0 and m be the charge and the mass of elec-
tron, r; = (&;,9;, 2;) be the radius-vector of j-th electron, e, > 0
and A, = (As, As2,Ay3) be the charge and the radius-vector of
s-th nucleus, s = 1,...,k; » = (r1,72,...,m), B3 = {r}. The PR
energy operator of the system Z,, can be written in the form

Hn = Kn + Vn(r)>

where
n 52 52 52
— : N _ /A 2 = Y 2
Kn—;K(z), K@) =vV-A;+m2, A; az§+ay§+azg’
in n k
Va(r) = €? Z r; — ;|71 +ZZee, |r; — A,71 (1)

1<3;1,3 i=1s=1
Here we took the Plank constant and the light velocity as units.
1.2. The operators K(z) are not local in the coordinate space,
so it is more convenient to consider them in the momentum repre-
sentation, where K (i) turn into multiplication operators K (3):

K (i) f(r:) = K () f(p3),



where K (i) = 1/p? + m?, f(p;) is Fourie-transform of the function

f(r;), pi is the momentum of i-th electron. By the technical reasons

we take the operator K (i) = K (i) — m instead of the operator K (%)
o no .

and K, = 3 K (%) instead of K,; for the potential V,(r) we keep

=1

the form (1). Thus instead of the operator H,, we shall study the
operator

Hn = Kn + Vna (2)

where the relativistic kinetic operator K, is the multiplication op-
erator in the momentum space, the potential V,,(r) is the multipli-
cation operator in the coordinate space. It is known [1], that the
operator H, is semi-bounded from below in Ly(R3"), if

es < —2/we, s=1,2,...,k, (3)

where under the chosen units system e? = 137~! is the value of
fine-structure constant, e, = —N,e, N, is the number in Mendeleev
periodic table of the element, whose atomic nucleus is considered.
So the inequalities (3) mean that

N,<87, s=1,2,....,k (4)

and further we assume everywhere, that (4) hold. Using Friedrichs
extension we extend the operator H, from C§° to self-adjoint op-
erator, again noted by H,.

Along with H,, we shall consider the operator H,_; of the sys-
tem Z,_1 = {1,2,...,n—1} of n—1 electrons in the potential field
of the same nuclei, which are contained in Z,. This operator is
defined by analogy with H,, but in the space L2(R3"~3) instead of
L2(R®*"); here

R3n—3 — {r'}Y, " =(r1,...,"n-1)-



2. SYMMETRY

2.1. Let O*(3) and W be the rotations and inversions groups

in R3, O(3) = O*(3) x W and Fj be such subgroup from O(3),

that the transformations g from Fj move identical nuclei one to the

place of the other one. In other words for any s, 1 < s < k and
g € Fj

gA: = At; g€ Gk (5)

where the nucleus with number ¢ is identical to the nucleus with
number s (e; = e,) and t depends on s and g. The group Fj is
named by the group of the system Z, POINT symmetry. Let S,
be the group of the permutations of n electrons, G = S, X F} and
G is one of the groups Fi, Sn, Gi. For g € G we define the unitary
operators Ty:

Ty(r) =9(g7'r), (r) € L(R*), g€G.

Using (5) it is easy to show, that
TgVa(r) = Va(r) Ty, g € Fi

where the operators T, act on the electrons coordinates. Conse-
quently
TQHn‘:HnTg) g € Gy = Sp X Fy. (6)

Let a, 7 and 0 = (a,7) be the types of the irreducible represen-
tations of the groups S,, Fx and Gj respectively. We denote by
4 the types of the irreducible representations of group G (that is
Yy=aif G=5,,y=7ifG=F,andy = (a,7)if G =G =
= Sp X F}) and by P — the projectors in £2(R3") on the sub-
spaces BY" = P{") £,(R3") of the functions, which are transformed
by the operators Ty, g € G according to the representations of the
types 7 of the group G (the expressions for P,({Y) are known, see
for example [9]). By (6) the subspaces B are invariant for the
operator H,.



Let H,(J) be the restriction of the operator H,, to the subspace
B,({Y). Our purpose is the study of the operator H,(;’) spectrum
structure for y = 0 = (,7), G = G = Sp X Fp.

2.2. Further we need in the description of permutational symme-
try of the system Z,_; = {1,2,...,n—1} states. Let o be the types
of irreducible representations of the group S,-1 permutations of

n—1 electrons, P,Sf‘_ll) be the projector in £2(R3"~3) on the subspace

Bf::? = P,E‘:ll) L(R3773) of functions ¢(r'), ' = {r1,...,7n-1},
which are transformed by the operator Ty: T, o(r') = ¢(g71r'),
g € Sp—1 according to the representation of the type o’ of the group

Sn—_1. It is clear, that the subspace B,(ili is invariant for the opera-

tor H,_1; let H 1(:’:2 be the restriction of the operator H,_; to B,(:ﬂ .
We denote by E(a) the set of such o', for which the representation
of the type o of the group S,-1 is contained in the representation
Dga), g € S, of the type a of the group S, after restriction Df,“)
from S, to Sp—1. From physical point of view E(a) is the set of all
permutational symmetry types, which are possible for the states of
the system Z,_;, when the states of the system Z, have the sym-
metry a. We can describe the set E(a) in explicit form. Let us
do it for example for the types a, permitted by Pauli principle for
fermions systems. Such a = o, correspond to all decompositions
of number n into numbers 2 and 1:

n
a,~(2,...,2,1,...,1), =0,1,...,[—].
p ~ ( ) P 2

P n—2p
Then
E(ap)=4qa'|a' ~(1,1,...,1) 3 ifp=0,
n—1
E(ap)z a'la'~(2,2,...,2,1) ifp:-;l (n—-even)’

-1



E(op)=4a),a5 | aj~(2,...,2,1,...,1,),a5~(2,...,2,1,...,1,
(ep) =401, a2 | o ~( )yaz~(2, )

p—1 n—2p+1 P n—2p-—1
i n
if 0<p< -2- .

Further we set

Bp_1(a) = Z GBB(a H, 1(a)= Z H(a

a’€E(a) o'€E(a)

The operator H,_1(a) is the restriction of the operator H,_; to
the subspace B,_1(a); let

p$) = inf Hoi(a). (7)

3. RESULTS ON THE ESSENTIAL SPECTRUM

3.1. Let the group Fj be finite.
Theorem 1. For Vo = (a, ) the essential spectrum sess(Hn (”)
of the operator H,(, %) consists of all points of half-line [p("‘), +00).

Let us consider this result. According to [2] the half-line
[1(®), 4-00) is the set of all points of the essential spectrum s.ss( H. (“))
of the operator Hy (a) So Theorem 1 says that for finite groups Fj
the equality sess(Hn (air) ) = Sess(H. (a)) holds for Vr.

Let us compare the case of finite groups Fj, with the situation,
when F}, is infinite. We consider only F, = O%(3) and F, = O(3) =
= 0%(3) x W (see 2.1). These groups F}, are rotational symmetry
groups for all PR atoms and their ions with infinitely heavy nuclei
(that is for the case k = 1, A; = (0,0,0,)). We denote by ! and

w the types of irreducible representations of groups O*(3) and W;
soT =1if F, = 0FY(3), 7 = (l,w) if F, = O(3) = O+ (3) x W.
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When F;, = O*(3) then inf sess(H,(,a'l)) = p(®) [3] similarly to the
case finite Fj. But when Fi, = O(3), the value inf s,ss(H,(,a'l’w))
depends not only on «a, but on 7 = ({,w) as well [3]. So for two
infinite groups — O%*(3) and O(3) — the situations are different
and it means, that dependence or independence inf sess(H,(,a’T)) on
T is not connected with group F} infiniteness or finiteness.

3.2. To understand the reasons of dependence (or independence)
of value inf scss(H,sa’T)) on 7 for different F}, let us note, that when
we find the lower bound of the operator H,, essential spectrum
in the space B,(f), o = (a,7), we have to estimate from below
the operator H,_; in the space B,_1(0) of such functions ¢(r') €
€ L(R3"3), that have the types of the permutational symmetry o'
and the rotational (point) symmetry 7/, which are possible for the
states of subsystem Z,_;, when the states of the whole system have
the symmetry of the type o. For any F C O(3) and ¢ = (o, 7)
such possible types o/ = (a',7') are described by the following
conditions:

a' is permitted, iff o' € E(a);

7! is permitted iff 37", for which

Dgr') ® Ds(f”) > Dg‘r), g€ F, (8)

a) PUIL(R™2)#£0, b) POILy(R)#0.  (9)

Here DgY) is irreducible representation of the type ¥ of the group
F,. It follows from the representations theory, that for V7,7’ we
can find 7" for (8). The conditions (9) hold for any 7/, 7", when
Fi, = 0%(3) and for any finite Fj [4]. So for these cases all 7/
are permitted and it means, that B,_1(a,7) = B,—1(a). This fact
results in the independence of the value inf s.ss( H. ,(f’r)) on 7 for the
mentioned cases.

But for Fi, = O(3) the relations (9) are wrong for some 7/,
7", since PO)Ly(R®) = 0 for vy = (0,—1), PMLy(R3) = 0 for
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v = (l,(—l)l“), l = 0,1,... The reason of it consists in the

property, of spherical harmonics Y},,, in R3: they have parity (—l)l.
This implies, that not all 7/ are permitted for given 7. For ex-
ample, if n > 4, G, = 0(3) and 7 = (0,w), w = %1, then the
types 7{ = (l,(—l)”‘lw), [ =0,1,2,... are not permitted, since
for 7 = 7/ there is the single type 7", for which (8) holds: 7/ = 7}’ =
= (l , (-—1)”’1) , but for 7" = 77" (9.b) is wrong. These considerations
show, that depending on 7 some types 7' of rotational symmetry
are impossible for functions ¢(r') € Bp_1(¢), ¢ = (a,7) and con-
sequently B(a) # B(a,7). It means inf sess(H)) = inf Ho_y (o)
may depend on 7, when Fj, = O(3).

3.3. The considerations of 3.2 show, WHY the lower bound
of essential spectrum of the operator H(?), ¢ = (a,7) has not to
do depend on 7. After these considerations we may do not prove
the “hard part” of the Theorem 1, which consists in the finding
of infsess(H,(f')). Actually sess(H,(f)) C sess(H,(,“)) for 0 = (a,T)
at V7 so it is sufficient to prove that [u(®), +o00) = scss(H,(,a)) c
C scss(H,(.”)). But such proof is the “easy part” of the proof HWZ-
type theorems and it may be done in standard manner on the base
of the relations (8), (9) and the results of [4].

4. RESULTS ON THE DISCRETE SPECTRUM

4.1. Let the group Fi be finite. We denote by @, the total
k
charge of the system Z,: @, =ne+ ) e;.
. s=1
Theorem 2. Let Q, > 0. Then the number #ga) =inf H,—1(a)
is the point of the discrete spectrum of the operator H,_1(a).

So the lower bound of the essential spectrum sess(H,(f)) of con-
sidered operator H, in the space of functions, having symmetry
o = (a,T) is the discrete eigenvalue of the operator H,_; in the
space B,_1(a) of the functions, whose permutational symmetry is
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possible for the states ¢(r],..., 7/ _;) of the subsystem Z,_;, when
the states of the system Z,, have the symmetry a.

Let U be the eigenspace of the operator H,_;(a), correspond-
ing to the eigenvalue pgf‘). Since TgrHpny = Hp 1Ty, g €qG =
= Sp-1 X Fg, then U is invariant for the operators Ty. It is evi-
dent, that operators Ty form a representation of the group Gj, in
the subspace U. To simplify our consideration we assume that this
representation is irreducible (that is U is not degenerated with re-
spect to the symmetry). We denote by o the type of the irreducible
representation g’ — Ty, ¢’ € G}, in U; since G}, = Sp_1 X Fy, then
oy = (af,14) for some types af and 7§ of irreducible representa-
tions of S,—-1 and Fj. Further for any numbers ¢ > 0, R > 0 we
introduce two-particle NR operators

heo(R) = ( = 5) A+t (1£€)Qurelra™,  (10)
which are considered on the smooth functions, supported in the
region |r,| > R. Let hg;',)(R) be the restriction of the operator
hie(R) to the subspace of functions, having point symmetry of the
type 4. At last for any real number A and self-adjoint operator
W we denote by N(X,W) the counting function of the discrete
spectrum sq(W) of the operator W on half-line (—oo, A].

4.2. Now we can formulate our main result.

Theorem 3. Let Q, > 0. Then the discrete spectrum of the
operator H i infinite at arbitrary o = (a,7) and for any € > 0,
Ao > 0 there are such numbers R > 0 and C; = C;(e,R), 1 = 1,2,
that for VA, 0 < A < A the following estimates of the operator H,(f)
discrete spectrum counting function hold:

ol > b(rs ma,7) 17172 (= A, REX(R)) - C1 < N(ul®)-x; HY)) <
~el
<ol > b(m; 7, 1) 17V (= X h§A(R)) + Ca, (11)
~er

where T is the set of all types of group Fj irreducible representa-
tions, the coefficient d(7; 73,v) shows, now many times the repre-
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sentation of the group Fj of the type 7 is contained in the tensor
product of the representations of the types 7§ and 7:

b(r; my) = [Fe ™ 3 x50 X050, (12)
g€EF;

xgp ) is the character of the element g in the group F}, representation
of the type p, p = 7§, 7,7; |7l,|o| are the dimensions of the repre-
sentations of the types ¥ and o, | Fi| is the number of the group Fy
elements.

In the Theorem 3 we obtained two-sided estimates of the dis-
crete spectrum n-particle PR operator H, ,(f) counting function in the
terms of counting functions of two-particle NR operators h(;’,} (R).

4.3. It is easy to prove, that

,\Bﬁo N( (7)(0)) =1 (13)
and N ( (’Y)(O))
=14 6(e) (14)

,\Efﬁ_o N( _ )‘; th)(O))

where the operator hi(0) is two-particle hydrogen like type oper-
ator with the known spectrum and eigenfunctions, §(+e) — 0 if
€ — 0. The calculations show, that

_ N(=x8%0)  yp
s N(—A; ho(O)) = | Fl (15)

where N (—A; ho(O)) is the known counting function of the operator
ho(0) discrete spectrum:

N (=X h(0)) = f(A) = 672272 m2 X321 Q,,_sef®.
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If we use the relations (13)-(15) then we obtain from the Theorem 3
the following result:
Theorem 4. Let Q, > 0. Then for Vo = (a,T)

N (pn = % HL)
lim =
A=040 |o| d(r,78) f(A)

1 (16)

where

d(r, ) = |Fel™ D b(rs o, 1) Il = 1Bl Il Imgl - (17)
v

and coefficients b(t; 74,7) are given by the relation (12).

4.4. Remarks.

1. Theorem 4 discovers the principal term of the spectral asymp-
totics of the discrete spectrum sd(H,(,a)) of the operator HY) and
its dependence on the point symmetry type 7. By Theorem 1

scss(H1(;a)) = scss(H,(,a’T)) and consequently

sa(H) = | sa(HE). (18)
rel

So Theorem 4 and relation (18) describe the inner structure of the

operator H,(,a) discrete spectrum with respect to all types point
symmetry of the eigenfunctions of this spectrum.

By the way from the relations (16)—(18) we can get the leading
term of the discrete spectrum counting function asymptotics for
the operator =, Actually taking into account that |o| = |a]|7|
and summing the functions |o|d(7,7§) f(A) over all 7 we obtain
|a| |73] £(A), where the number |7§| may be considered as the mul-
tiplicity of the group S, irreducible representation of the type aj
in U (see 4.1). This result is agreed with [6].

2. By (16), (17) the leading term of spectral asymptotics of
sd(H,(,”)) depends on the type 73 of the point symmetry PR system
Zp—1 ground state, when the states of the system Z, have the
symmetry o = a (74 is the type of the point symmetry of functions
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from eigenspace U of the operator H,_;(a), corresponding to its
minimal eigenvalue 1), see §4.1).

Unfortunately, we do not know 7§ and there are no any restric-
tions on the possible types 75. So to get all possible variants of
asymptotics for fixed ¢ = (a,7) we are obliged (according (17))
to consider all 7y ,having the different |7g|. Let us consider the
simplest example setting F, = F3 = D3, where D3 is the rotation
symmetry group of equilateral triangle. The group D3 has two one-
dimensional irreducible representations and one two-dimensional ir-
reducible representation. We denote their types by 71, 73, 73 respec-

tively. Then

, T
6
d(r,73) = l;—' if Tg=13

As justification of such situation one can add that similar lack of the
determination is present in the all known results on the spectrum
structure of PR and NR many particle hamiltonians with symmetry
account. It is generated by the absence of any results on the hierar-
chy (subordination) of the operators lower bounds in the symmetry
spaces depending on the symmetry types.

3. Theorem 4 gives only leading term of spectral asymptotics
similar to the cases, where we took into account the symmetry
with respect to groups Sy, [5] or S, X OF(3) or S, x O(3) x W [3].
The main reasons of the second term absence are the same, as
in [5]. Namely, to get the second term of spectral asymptotics
(using geometrical methods similar to [8]) it is necessary to know
the summability with suitable weight of the eigenfunctions of the
discrete spectrum PR operator H,(f). Unfortunately such results
are absent for n > 2.
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