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In this paper we formulate our results on the essential spectrum
of many-particle pseudorelativistic hamiltonians without magnetic
and external potential fields in the spaces of functions, having ar-
bitrary type a of the permutational symmetry. We discover the
location of the essential spectrum for all a and for some cases ob-
tain for the lower bound of this spectrum the formula (15), which
is convenient for the study of the discrete spectrum.

Before this time similar results on the essential spectrum were
obtain in [2], but in [2] not any a were considered and the construc-
tion of the operator of the relative motion was not invariant with
respect to the permutations of identical particles in contrast to our
approach (in this respect the connection of our results with [2] is the
same one, as the connection [4] with [5]); moreover the formula (15)
is new. :

1. Let Z; = {0,1,...,n} be the quantum system of (n + 1)
particles, m;, r; = (i, i, z;) and p; be the mass, the radius-vector
and the momentum of i-th particle. Pseudorelativistic (PR) energy
operator of Z; can be written in the form

H = K'(r)+ V(r), (1)
where r = (7o, 71,...,70),
n *)
K'(r)=Y1/-A; +m?
7=0
1 n
V(r) =Vo(r) = 5 > Vilril), (2)
i,j=0, ]
0 0? 02
Aj; = 6z2 + 3yf + 3 2, Vii(Irij1) = Vji(|rji]) be the real po-

tential of the 1nteract10n i-th and j-th particles, r;; = »; — rj,
Vij(Ir1]) € La0c(R?), Vij(Ir1]) — 0 at |r1] — oo, and Vij(|ri;]) are

*YWe took the unit system in this way, that Plank constant and the light
velocity are equal to 1.



.such, that for some €9 > 0 the operator H' is semibounded from
below for V(r) = (1 + €o)Vo(r). If the system Z; is a molecule,
the last condition means, that we may consider only the molecules,
which consist of atoms such elements, whose number in Mendeleev
periodical table less than 85 [1, 2].

The operator H' is not local: in the coordinate space the op-
erators /—Aj; + mf are the integral operators, in the momentum
representation multiplicators V;;(|r;;|) turn into integral operators.
But in the momentum space the operators ,/—A; + m§ are multi-

‘plication operators. Actually let p;=(pj1,Pj2,Pj3), P=(Po,---,Pn),
@(r) € L2(R?***3), and P(p) be Fourie-transform of ¢(r):

1 .
?(p) = —=nrs / o(r) e dr,
( 27(' ) R3n+3
then
V=45 +mie(r) = \/p} + m} B(p)-
Let

Ti(p;) = P} +mi, T'(p)= iT,‘(pj)-

7=0

Now we can rewrite operators H' using mixed form writing:
H =T'(p) + V(r), (3)

where the operators T'(p) and V(r) act in the momentum and in
the coordinate spaces respectively.

2. The operator H’' corresponds to the energy of the whole sys-
tem motion. But for applications it is interesting to know the spec-
trum of the operator, corresponding to the relative motion energy.
To get such operator for nonrelativistic (NR) case one separate the
center-of-mass motion, but for pseudorelativistic (PR) case it is im-
possible. To construct the operator of the relative motion from PR
operator H' we reduce the operator H’' to any fixed eigenspace of
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the operator of the total momentum’f2]. Let & = (o1, {02, £03) be
the center-of-mass radius-vector:

éozzmj'l'j/M, M=ij,

=0 3=0

g; = r; — fo be the relative coordinates of j-th particle, j =
=0,1,...,m, ¢ = (go,---,qn). We take g, {o as the new coordi-
nates of the particles from Z,. Let us note, that vectors go,...,qn
are dependent: they belong to the space

R0={q’|q,=(Q67"'7q:;)) ijq;=0=(0:0)0)}

j=0

of the relative motion. From the other hand, if ¢'=(gg, ..., ¢,) € Ro
and £} is arbitrary fixed vector from R3, we may consider g; and &
as the relative coordinates of the point r; = ¢; + £, 7 = 0,1,...,n
and the center-of-mass position of Z; respectively. It is easy to see
that Fourie-conjugate coordinates to g; are the same p; as for r;,
and Fourie-conjugate coordinate for &g is Po = (Po1, Poz, Po3) =

n
J=0
Let us consider the operators
1 d
Los = = s=1,2,3.
0s i d£03 ’ <

In the momentum space these operators hare multiplication opera-
tors
Los = Pos-

It follows from above that the operators Lo,{Lo,} commute with
‘H'. So any eigenspaces of the operators Lo, hare invariant for H'.
Let —Qos; be a real eigenvalue of the operator Lg,, Wy, be the
corresponding eigenspace and

Wo = Wor N Woz N Wos.



The space Wy is invariant for H'. Evidently
—3/2 _—i ")
Wo = {(2m)"*/2 et ()}

Wo = {?(p) H 8(Pos — QO:)}a

s=1

where Qo = (Qo1,Qo2,Qo3), ¥(g) is arbitrary function, p(q) €
€ L2(Ro), and Wy is Fourie-image of Wp.

Let us rewrite the operator H' using the coordinates ¢, & {p, P}
and reduce it to the subspace Wo{Wy}. Then we obtain the oper-
ator H' in the form

Hy=T'(p,Qo) + V(a), (4)

where
T’(p’ QO) = T’(p)7
but with the condition

S p; = Qo; (5)

s

1 n
Vig)=5 > Villa-gl), a-g=ri-r;

1,5=0,i#j

We see that H{ depends on the relative coordinates g, their mo-
menta p and the total momentum value @Qo. So if we fix Qo we
obtain the operator, which can be considered as the operator of the
relative motion. We shall study this operator in the space L2(Ro
with condition (5) for momenta.

*)The coefficient (21)"3/ 2 in front of the e~*(90+¢0) plays the role of “normal
. 4
izing factor”: Fourie-image of (21r)'3/2 e~¥(Qo:éo) jg I1 6(Pos — Qoa) withou
=1

any factor.



For technical reasons it is convenient to take

T;(p;) = Tj(p;) — m;

instead of T;(p;) and
T(p,Qo) = Y_Ti(ps)
3=0

instead of T'(p; Qo). So the subject of our study is the operator

Ho = T(p; Qo) + V(g) (6)

(with condition (5)). The operator Hp is bounded from below on
C§°(Ro). We extend it to self-adjoint one using Friedrichs exten-
sion, and save the notation Hg for the obtained operator.

Let us note that instead of dependent coordinates gy, ..., g, We
could introduce the independent relative coordinates (and their mo-
menta) similar to [2], but such approach generates the difficulties,
when one takes into account the permutational symmetry (see §5)
and we do not use this approach.

3. We shall study the spectrum of the operator Hp not in the
whole space £2(Ry), but in the subspaces of functions from £2(Ro),
having the fixed types of permutational symmetry. We do this

i) to satisfy Pauli exclusion principle,

ii) to obtain the additional information about the structure of
the spectrum Hp.

We denote by S and a the group of the permutations of all
identical particles of Z; and the arbitrary type of irreducible rep-
resentation of S respectively. Let us determine the operators T,
g € S, by the relations

Toe(q) =9(g7q), g€S (7)
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and put

P = lo S 3y, BE) = Pl £y(Ry),
|S|g€s

where xg“) be the character of the element g € S in the irreducible

representation of the type a, I, be the dimension of this representa-
tion, || be the number of elements of S. The operator P(®) is the
projector in £3(Ro) on the subspace B(®) = B(*)(Ry) of functions,
which are transformed by the operators T, g € S, according to the
representation of the type a [3]. Evidently P(“)Ho HoP(®), Let
Hé“) = HoP(e), H((, )3 is the restriction of the operator Hp to the

subspace B(®) of the functions, having the permutational symmetry
of the type a.

In thls paper we discover the location of the essential spectrum
sess(Ho )) of the operator Hy (o)

4. Let Z, = (D1,D3) be arbitrary decomposition of the initial
system Z; into 2 non empty clusters D; and D, without common
elements:

DiUDy=2,, DiNDy=0
and
H(Z;) = T(p, Qo) + V(g; Z2), (8)
where
V(g Z2) = 5 Z Z Vii(lg; — @l)-
s=1 1,j€D,,1#]

H(Z,) is PR energy operator of compound system Z, consisting
of non interacting (one with other) clusters Dy, D, with the same
condition (5) for total momentum as for Z;:

n
> opi=
1=0

Let S[D,] be the group of the permutations of all identical particles
from D,, s = 1,2, § be the permutation D; < D, if these clusters
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are identical (D, ~ D,). We put

So(Z2) = S[D1] x S[Ds],
5(Z2) = So(Z3) if Dy o Do,
S(Zz) = S'(Zz) = So(Zz) U So(Zz)g lf D1 ~ Dg.

S(Z,) is the group of the permutational symmetry of the compound
system Z,. It is clear, that So(Z2) C S(Z;) C S.

Let F(a; Z;) = {a'}{Fo(a; Zy) = {&}} be the set of all types
o'{a} of the group S(Z;){So(Z:)} irreducible representations,
which are contained in the group S irreducible representation Dga)

of the type a after reducing Df,a) from S to 5(Z2){So(Z2)}. For
Va'{&} we determine the projector P(*')(Z,){P(%)(Z;)} on the sub-
space of functions ¢(g), which are transformed by the operators T},

Toe(q) = (97%a), 9€5(Z2), {g€ So(Z2)}

according to the group S(Z2){So(Z,)} irreducible representation of
the type o'{a}.

Let ¥ = o' or v = &; obviously if PO)(Z,) ¢(q) = ¢(g), then
PU)(Z;) (p) = B(p). We set

Pla; Zo)= Y. PONZ), Pl 2Z)= Y. P&z,
a'€F(a; Z7) &€Fy(a; Z2)

H(e; Z2) = H(Z3)P(a; Z), H(a; Zo) = H(Z,) P(a; Z,).

The operator H(c; Z2){H(a; Z5)} is the restriction of the opera-
tor H(Z;) (see (8)) to the subspace B(a; Z3) = P(a; Z2) La(Ro)
{B(a; Z3) = P(a; Z2) L2(Ro)}. Let

ul®) = min inf H(a; Z,). (9)
2

It is possible to prove that

#(a) = n%ln inf fI(a, Zz) (10)
2



We denote by A(a) the set of all Z;, for which
inf H(c; Z,) = n%j,ninf H(a; Z3);
2

then 5
p®) =inf H(e; Z3), Z € A(a). (11)

5. Our main result is the following theorem

Theorem 1. Essential spectrum sess(H, §°‘)) of the operator H, ((,a)
consists of all points half-line [u(®), + o).

Let us compare Theorem 1 with the corresponding results [2].

Firstly, in [2] the similar result was proved only for one of sim-
plest types a of the permutational symmetry (for such «, which
corresponds to one-coulomn Young scheme), while we accept arbi-
trary a.

Secondary, we use more natural, simple and transparent ap-
proach for symmetry account as compared with [2]. Actually, we
apply the relative coordinates ¢; with respect to center-of-mass po-
sition §o: ¢ = 7; — o, ¢ = 0,1,...,n and so the transposition g;:
7; <> 7o of j-th and 0-th particles results in the transposition g; and
go only, but just as all other coordinates g;, 7 # j, i # 0, are with-
out any changing. In [2] the relative coordinates §; are taken with
respect to the position of 0-th particle: ¢; = r; —ro, 2 =1,2,...,n
and this choice implies the chainging of all §; under transposition
g; Namely, Ty, %(@) = $(g5' @) = $(d), where § = (g, ..., dn),
§d =(¢1,---Gn), & = G — §j, ¢+ # j, §; = —§G;. Such situation is
not realized only if the system Z; contains a particle, which is not
identical to' any other particle from Z; (and if we index this particle
by number 0), but there is no such exceptional particle in the most
number of molecules. Completing the second remark we can note
roughly speaking that our approach for permutational symmetry
account follows [4], while authors [2] follow [5].

6. We do not write here the proof of the Theorem 1, since the
significant part of this proof will be needed for the study of the
discrete spectrum sq(H, ((,a)) of the operator Hga) (this study is not
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finished), so we shall publish the full proof of the Theorem 1 later
(together with the results on the discrete spectrum). But here we
shall do .sdomie preparations for our next paper. Namely, we shall
obtain from (10), (1) the other formula for p(®), which is more
- convenient for the investigation of the structure sq(H éa)). To do it
first of all we transform the expression of the operator H(Z,) for
fixed Z, = (D1, D,;). We introduce the clusters D, center-of-mass
coordinates

ga = (631)6327633) = Z Tij/M,, Ms = Z my,

j€ED, JjED,

the relative coordinates g¢;(Z2) = 7; — &, j € D, of the parti-
cles from D, with respect to center-of-mass position and the vector
n = & — &. Evidently, that ¢;(Z,) = g; + €o — &, where § — &1 =
= Mon/M, & — €& = —-Min/M.

The coordinates ¢(Z;) = (qo(Zz), cees qn(Zz)) are not indepen-

dent, since Y, m;gj(Z;) = 6, s = 1,2. It is easy to see that
jeD,
Fourie-conjugate coordinates to g;j(Z2) be the same p;, as before.

Let P, = 3 p;. Then Fourie-conjugate coordinates to  be
je€D,

Py = (Pn1, Pn2, Pya) = (P2My — P1 M)/ M (12a)

where by (5)
P14+ P2 = Qo. (120)

We consider ¢(Z2) and 7 as new coordinates of particles from Z;
and denote the operator H(Z;) in new coordinates by Ho(Z2). Ac-
cording to above and since ¢; — ¢; = ¢i(Z;) — ¢j(Z2), i,7 € Dy,
s =1,2, we have

H(Z2) = Ho(Z) = T(p,Qo, Pn) + V(q(Zz); Zz) (13)

where the operator (13) has the same form, as the operator (8), but
the conditions (12a,b) have to be hold.
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Let us introduce the spaces

Ro(Z3) = {Q(Zz) | 9(22) = (QO(Zz),-'-,qn(Zz)),

JED,
Ry={n|n=(m,m2,m)}, Ron(Z:2)= Ro(Z:) ® R,,

Z mjqj(Z;) =0, s= 1,2},

£2(Ron(22)) = {9 (a(Z0)7) | [ lel*da(Z2)dn < +o0
Ro 5
In the space L, (Ro,,,(Zz)) we determine the operators Péa)(Zz)
similarly to operators P(%)(Z,), but now the operators T,, g €

€ So(Z,), are defined on the functions (p(q(Zz), n) and @(p, Pp) by
the relations

T, 0(2(Z2),n) = 057" 4(22),1), T %(p, Pr) = B9 ™p, Py).

Here we took into account, that g~n = 7 and ¢~'P, = P, for
V1, Pn, Vg € So(Z5).
Let

Po(a; Zz) = Z Pé&)(Z2), .E[o(a; Zz) = Ho(Zz) Po(a; Zz).
&eFo(a,Zz)

According to (11)
p(®) = inf Ho(a; Z5), 2, € A(a)

where the operator Ho(c; Z3) is considered in the space L3(Ro,y)-
Since the operator T'(p, Qo, P,) is multiplication operator and the

potential V(q(Zz); Z2) does not depend on 7, we may consider the

operator Elo(a; Z,;) = ro(a; Za; Py) in the space L, (Ro(Zz)) at
the arbitrary fixed P, = Q. Then

p®) = igfinfﬁo(a; Z2;Q), Z; € Aa). (14)
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The operator H(a; Z2; Q) depends on @ continuously and

lim inf Ho(o; Zo; = 400
ol oo of 2; @)
since if |@| — +o0, then at least for one j it holds |pj| — oo and
consequently T'(p,Qo,Q) — +00. So there exists a compact set
T'(a; Z,) of such vectors @ € R3 that

p(a) = in_fI-:To(a; Zy; Q), Qe P(a; ZZ): YARS A(Ot)

7. Unfortunately in general case we know nothing about finite-
ness or infiniteness of the number of the set I'(a; Z;) elements. But
we can prove the following assertion

Lemma 1. Let for some open region W C R®, T'(a; Z2) C W,

i) Ma; Za; Q) := inf Ho(e; Zs; Q) is the point of the discrete
spectrum of the operator Ho(a; Z2; Q) for Q € W,

it) there is such &g, which does not depend on Q, that the repre-
sentation g — Ty, g € So(Z2) in the eigenspace U(a; Z2; Q)
of the operator I-:To(a; Zy; @), corresponding to its eigenvalue
AMea; Z2; Q), has ONE wrreducible component of the type &g
forall@Q e W.

Then the set T'(a; Z3) is finute.

Remark. The conditions of Lemma 1 forbid the degeneration of
the eigenspace U(a; Z,; Q) with respect to the symmetry of So(Z,)
group only for some type &g of the irreducible representation of
S0(Z,), while for all other types & the degeneration is possible. It
means, that the representation ¢ — T'g, g € So(Z2), may have in
the eigenspace U(«a; Z3; Q) more than one irreducible component
of any type &, & € Fo(a, Z3), & # &q.
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Proof. Let Bo(a; Zy) = Po(a; Z3)L, (Ro(Zz)). Since

Po(e; 25) = PS)(2,) + > P{¥(2,),
&€ Fo(a; Z2),a#&0

then
Bg*)(25) := P{*)(23) Bo(es; Z5) = P{™)(25) L2(Ro(2Z2)).
It follows from the conditions i), ii), that in the space
U = U(a; Zs; Q) N B (2,) = PP U(a; Z2; Q)

the representation g — Ty, g € So(Z) is irreducible and has the
type ap.

Let Péf‘ °) be the projector in B((,a")(Zz) on the space B‘(,?)(Zz)
functions, which belong to the first line of the group So(Z3) irre-
ducible representation of the type ép.

Then the space Bg‘im)(Zg) is invariant for the operator Ho(Z5)
and in this space the minimal eigenvalue A\(a; Z,; @) of the oper-
ator Ho(Z,) is nondegenerated, since the corresponding eigenspace
Péf‘ °) 7(&) is one-dimensional. In other words, the minimal eigen-
value of the operator Péf' o) g o(a; Z,; @) is nondegenerated at
VQ € W. But if A(a; Z3; Q) is nondegenerated, then A(a; Z3; Q)
is analytical function of @, since the operator Ho(Z;) is analytical
function on @ [6]. That is why there is only finite number of such
vectors @, for which

w® = Xa; Z»; Q). (15)
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